Modelagem e simulação da síntese de biodiesel com o auxílio do software Matlab
Visualizações: 59DOI:
https://doi.org/10.36704/cipraxis.v19i34.9075Palavras-chave:
Biodiesel, Transesterificação, Simulação, Modelagem, MatlabResumo
Introdução: O biodiesel é um combustível renovável que contribui para uma matriz energética mais limpa. Sua produção pode ser otimizada por meio de estudos de simulação e modelagem.
Objetivo: Simular a cinética da transesterificação de óleo vegetal com metanol, visando a conversão de triglicerídeos em ésteres metílicos.
Métodos: Diferentes temperaturas, proporções de álcool e óleo, além da influência de constantes de velocidade, foram exploradas. Um código em Matlab foi desenvolvido para resolver as equações diferenciais da reação e relacionar os parâmetros da transesterificação.
Resultados: As simulações mostraram que a concentração máxima de ésteres metílicos (2,57 mol/L) foi alcançada em 30 minutos a 60 °C, com uma razão álcool:óleo de 6:1. O modelo cinético foi eficaz e corroborou com estudos anteriores.
Conclusão: A pesquisa demonstrou a viabilidade do uso de métodos computacionais, como o Matlab, para otimizar o processo de produção de biodiesel.
Referências
AHMAD, Tanweer et al. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, v. 139, p. 1272-1280, 2019. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.renene.2019.03.036. DOI: https://doi.org/10.1016/j.renene.2019.03.036
ALCANTARA, A.; LOPEZ-GIMENEZ, F. J.; DORADO, M. P. Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil. Energies, v. 13, n.11, p. 2994, 2020. DOI: https://doi.org/10.3390/en13112994. DOI: https://doi.org/10.3390/en13112994
ALISMAEEL, Ziad T. et al. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel, v. 234, p. 170-176, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2018.07.025. DOI: https://doi.org/10.1016/j.fuel.2018.07.025
ANIYA, V. K.; MUKTHAM, R. K.; ALKA, K.; SATYAVATHI, B. Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study. Fuel, v. 161, p. 137-145, 2015. DOI: https://doi.org/10.1016/j.fuel.2015.08.042. DOI: https://doi.org/10.1016/j.fuel.2015.08.042
BAČIĆ, Matea et al. Continuous integrated process of biodiesel production and purification—the end of the conventional two-stage batch process?. Energies, v. 14, n. 2, p. 403, 2021. DOI: https://doi.org/10.3390/en14020403. DOI: https://doi.org/10.3390/en14020403
BANCHERO M.; GOZZELINO G. A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15. Energies, v. 11, n.7, p. 1843, 2018. DOI: https://doi.org/10.3390/en11071843. DOI: https://doi.org/10.3390/en11071843
BASHIRI, H.; POURBEIRAM, N. Biodiesel production through transesterification of soybean oil: A kinetic Monte Carlo study. Journal of Molecular Liquids, v. 223, p. 10-15, 2016. DOI: https://doi.org/10.1016/j.molliq.2016.08.029. DOI: https://doi.org/10.1016/j.molliq.2016.08.029
BORRERO-DE ACUÑA, José Manuel et al. Fed-batch mcl-polyhydroxyalkanoates production in Pseudomonas putida KT2440 and ΔphaZ mutant on biodiesel-derived crude glycerol. Frontiers in Bioengineering and Biotechnology, v. 9, p. 642023, 2021. DOI: https://doi.org/10.3389/fbioe.2021.642023. DOI: https://doi.org/10.3389/fbioe.2021.642023
BORTOLETTO, G. de C. Cinética da reação de transesterificação do óleo de soja para produção de biodiesel via catálise homogênea. 2020. Disponível em: https://repositorio.unifesp.br/handle/11600/58707. Acesso em: 2 nov. 2023.
CAROTA, Eleonora et al. Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon, v. 6, n. 9, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.heliyon.2020.e04801. DOI: https://doi.org/10.1016/j.heliyon.2020.e04801
CARVALHO, Suelen Conceição de et al. Mathematical modeling of the reactions involved in biodiesel production from waste oils and fats in a batch reactor. Biofuels, p. 1-5, 2024. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1080/17597269.2024.2386485. DOI: https://doi.org/10.1080/17597269.2024.2386485
DE, Riju; BHARTIYA, Sharad; SHASTRI, Yogendra. Constrained iterative learning control of batch transesterification process under uncertainty. Control Engineering Practice, v. 103, p. 104580, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.conengprac.2020.104580. DOI: https://doi.org/10.1016/j.conengprac.2020.104580
DUSSAN, K. J.; CARDONA, C. A.; GIRALDO, O. H.; GUTIÉRREZ, L. F.; PÉREZ, V. H. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresource technology, v. 101, n. 24, p. 9542-9549, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.07.044. DOI: https://doi.org/10.1016/j.biortech.2010.07.044
FOGLER, H. S. Elementos de Engenharia das Reações Químicas. 3ª ed. Rio de Janeiro, RJ: LTC, 2002.
FONSECA, F. A. S.; VIDAL-VIEIRA, J. A.; RAVAGNANI, S. P. Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors. Bioresource technology, v. 101, n. 21, p. 8151-8157, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.05.077. DOI: https://doi.org/10.1016/j.biortech.2010.05.077
FREEDMAN, B.; BUTTERFIELD, R. O.; PRYDE, E. H. Transesterification kinetics of soybean oil 1. Journal of the American oil chemists’ society, v. 63, p. 1375-1380, 1986. DOI: https://doi.org/10.1007/BF02679606. DOI: https://doi.org/10.1007/BF02679606
GANESHAN, P.; RAJENDRAN, K. Dynamic simulation and optimization of anaerobic digestion processes using Matlab. Bioresource Technology, v. 351, p. 126970, 2022. DOI: https://doi.org/10.1016/j.biortech.2022.126970. DOI: https://doi.org/10.1016/j.biortech.2022.126970
HEYNDERICKX, P. H. Acquisition of nonlinear kinetics from linear relations: Application on homogeneous transesterification reactions, Chemical Engineering Journal, v. 342, p. 41-51, 2018. DOI: https://doi.org/10.1016/j.cej.2018.01.027. DOI: https://doi.org/10.1016/j.cej.2018.01.027
IYYAPPAN, J. et al. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. Bioresource technology, v. 269, p. 393-399, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2018.09.002. DOI: https://doi.org/10.1016/j.biortech.2018.09.002
JAFARI, Dariush; ESFANDYARI, Morteza. Optimization of temperature and molar flow ratios of triglyceride/alcohol in biodiesel production in a batch reactor. Biofuels, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1080/17597269.2017.1358945. DOI: https://doi.org/10.1080/17597269.2017.1358945
KARMEE, S. K.; CHANDNA, D.; RAVI, R.; CHADHA, A. Kinetics of base-catalyzed transesterification of triglycerides from Pongamia Oil. Journal of the American oil chemists’ society. v. 83, p. 873–877, 2006. DOI: https://doi.org/10.1007/s11746-006-5040-z. DOI: https://doi.org/10.1007/s11746-006-5040-z
KOMERS K.; SKOPAL, F.; STLOUKAL, R.; MACHEK, J. Kinetics and mechanism of the KOH—catalyzed methanolysis of rapeseed oil for biodiesel production. European Journal of Lipid Science and Technology, v. 104, n. 11, p. 728-737, 2002. DOI: https://doi.org/10.1002/1438-9312(200211)104:11%3C728: AID-EJLT728%3E3.0.CO;2-J. DOI: https://doi.org/10.1002/1438-9312(200211)104:11<728::AID-EJLT728>3.0.CO;2-J
KUMAR, Lalit R. et al. Microbial lipid and biodiesel production from municipal sludge fortified with crude glycerol medium using pH-based fed-batch strategy. Journal of Environmental Chemical Engineering, v. 9, n. 1, p. 105032, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.jece.2021.105032. DOI: https://doi.org/10.1016/j.jece.2021.105032
KUMAR, R.; TIWARI, P.; GARG, S. Alkali transesterification of linseed oil for biodiesel production. Fuel, v. 104, p. 553-560, 2013. DOI: https://doi.org/10.1016/j.fuel.2012.05.002. DOI: https://doi.org/10.1016/j.fuel.2012.05.002
LIU, Lin et al. Biodiesel production from microbial granules in sequencing batch reactor. Bioresource technology, v. 249, p. 908-915, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2017.10.105. DOI: https://doi.org/10.1016/j.biortech.2017.10.105
METAWEA, Rodaina et al. Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles. Energy, v. 158, p. 111-120, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.energy.2018.06.007. DOI: https://doi.org/10.1016/j.energy.2018.06.007
MIRIAM, LR Monisha et al. Algal oil extraction-cum-biodiesel conversion in a novel batch reactor and its compatibility analysis in IC engine at various CRs. Fuel, v. 293, p. 120449, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2021.120449. DOI: https://doi.org/10.1016/j.fuel.2021.120449
MIRZAYANTI, Yustia Wulandari et al. Performance of In-Situ Stirring Batch Reactor Transesterification of Nannochloropsis sp Microalgae into Biodiesel. International Journal of Technology, v. 15, n. 4, 2024. DOI: https://doi.org/10.14716/ijtech.v15i4.6678. DOI: https://doi.org/10.14716/ijtech.v15i4.6678
MOLINA, R.; ORCAJO, G.; MARTINEZ, F. KBR (Kinetics in Batch Reactors): a Matlab-based application with a friendly Graphical User Interface for chemical kinetic model simulation and parameter estimation. Education for Chemical Engineers, v. 28, p. 80-89, 2019. DOI: https://doi.org/10.1016/j.ece.2018.11.003. DOI: https://doi.org/10.1016/j.ece.2018.11.003
NARVÁEZ, P. C.; RINCÓN, S. M.; SÁNCHEZ, F. J. Kinetics of palm oil methanolysis. Journal of the American oil chemists’ society. v. 84, p. 971–977, 2007. DOI: https://doi.org/10.1007/s11746-007-1120-y. DOI: https://doi.org/10.1007/s11746-007-1120-y
NOUREDDINI, H.; ZHU, D. Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists' Society, v. 74, n. 11, p. 1457-1463, 1997. DOI: https://doi.org/10.1007/s11746-997-0254-2. DOI: https://doi.org/10.1007/s11746-997-0254-2
PANTANO, M. Nadia et al. Evolutionary algorithms and orthogonal basis for dynamic optimization in L2 space for batch biodiesel production. Chemical Engineering Research and Design, v. 177, p. 354-364, 2022. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cherd.2021.11.001. DOI: https://doi.org/10.1016/j.cherd.2021.11.001
PEREIRA, Ana S. et al. Bio-oil production for biodiesel industry by Yarrowia lipolytica from volatile fatty acids in two-stage batch culture. Applied Microbiology and Biotechnology, v. 106, n. 8, p. 2869-2881, 2022. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s00253-022-11900-7. DOI: https://doi.org/10.1007/s00253-022-11900-7
PETRY, F.; DURIGON, G.; SILVA, M. B. Reator em batelada e aplicações em processos industriais. Anuário Pesquisa e Extensão Unoesc Videira, v. 2, p. e16266-e16266, 2017. DOI: https://orcid.org/0000-0003-2428-8080.
PRICE, J.; HOFMANN, B.; SILVA, V. T.; NORDBLAD, M.; WOODLEY, J. M.; HUUSOM, J. K. Mechanistic modeling of biodiesel production using a liquid lipase formulation. Biotechnology Progress, v. 30, n. 6, p. 1277-1290, 2014. DOI: https://doi.org/10.1002/btpr.1985. DOI: https://doi.org/10.1002/btpr.1985
RAMÍREZ-LÓPEZ, R.; ELIZALDE, I. Numerical simulation of a heterogeneous catalytic batch reactor to produce biodiesel from vegetable oil. Reaction Kinetics, Mechanisms and Catalysis, v. 136, n. 2, p. 637-651, 2023. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s11144-023-02369-0. DOI: https://doi.org/10.1007/s11144-023-02369-0
RASHEED, O.; KELANI, Z. A.; DIPESH P. Mechanistic model-based control of biodiesel production processes: a review of needs and scopes, Chemical Engineering Communications, v. 210, p. 274-290, 2023. DOI: https://doi.org/10.1080/00986445.2021.2012463. DOI: https://doi.org/10.1080/00986445.2021.2012463
SANTANA, H. S.; JÚNIOR, J. L. S.; TARANTO, O. P. Numerical simulations of biodiesel synthesis in microchannels with circular obstructions. Chemical Engineering and Processing: Process Intensification, v. 98, p. 137-146, 2015. DOI: https://doi.org/10.1016/j.cep.2015.10.011. DOI: https://doi.org/10.1016/j.cep.2015.10.011
SARDELLA, M. F.; SERRANO, M. E.; CAMACHO, O.; SCAGLIA, G. J. E. Design and Application of a Linear Algebra Based Controller from a Reduced-Order Model for Regulation and Tracking of Chemical Processes under Uncertainties. Industrial & Engineering Chemistry Research, v. 58, n. 33, p. 15222-15231, 2019. DOI: https://doi.org/10.1021/acs.iecr.9b01257. DOI: https://doi.org/10.1021/acs.iecr.9b01257
SCARPONI, P. et al. C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production. Waste Management, v. 136, p. 266-272, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.wasman.2021.10.014. DOI: https://doi.org/10.1016/j.wasman.2021.10.014
SILVA, M. G. et al. Esterification of oleic acid in a semi-batch bubble reactor for biodiesel production. Brazilian Journal of Chemical Engineering, v. 36, n. 1, p. 299-308, 2019. DOI: https://doi.org/10.1590/0104-6632.20190361s20180185. DOI: https://doi.org/10.1590/0104-6632.20190361s20180185
SIMASATITKUL, L.; SIRICHARNSAKUNCHAI, P.; PATCHARAVORACHOT, Y.; ASSABUMRUNGRAT, S.; ARPORNWICHANOP, A. Reactive distillation for biodiesel production from soybean oil. Korean Journal of Chemical Engineering, v. 28, p. 649-655, 2011. DOI: https://doi.org/10.1007/s11814-010-0440-z. DOI: https://doi.org/10.1007/s11814-010-0440-z
SONKAR, S.; DEB, D.; MALLICK, N. Outdoor cultivation of the green microalga Chlorella minutissima in mini pond system under batch and fed-batch modes integrating low-dose sequential phosphate addition (LDSPA) strategy for biodiesel production. Biomass and Bioenergy, v. 138, p. 105596, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biombioe.2020.105596. DOI: https://doi.org/10.1016/j.biombioe.2020.105596
SOUZA, T. P.; SILVA, R. J.; MELO, J. C.; TSCHOEKE, I. C.; SILVA, J. P.; PACHECO, J. G.; SILVA, J. M. Modelagem cinética da transesterificação de óleo de algodão com etanol. Reaction Kinetics, Mechanisms and Catalysis, v. 128, n. 7, p. 07–722, 2019. DOI: https://doi.org/10.1007/s11144-019-01661-2. DOI: https://doi.org/10.1007/s11144-019-01661-2
STANESCU, R. C.; LEAHU, C. I.; SOICA, A. Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor. Energies, v. 16, 2023. DOI: https://doi.org/10.3390/en16062883. DOI: https://doi.org/10.3390/en16062883
TALAGHAT, M. R.; MOKHTARI, S.; SAADAT, M. Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel, v. 280, p. 118578, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2020.118578. DOI: https://doi.org/10.1016/j.fuel.2020.118578
TAN, Chung Hong et al. Exploring the potency of integrating semi-batch operation into lipid yield performance of Chlamydomonas sp. Tai-03. Bioresource technology, v. 285, p. 121331, 2019. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2019.121331. DOI: https://doi.org/10.1016/j.biortech.2019.121331
TANAMOOL, Varavut; ENMAK, Prayoon; KAEWKANNETRA, Pakawadee. Batch Fermentation of Salt-Acclimatizing Microalga for Omega-3 Docosahexaenoic Acid Production Using Biodiesel-Derived Crude Glycerol Waste as a Low-Cost Substrate. Fermentation, v. 10, n. 2, p. 86, 2024. DOI: https://doi.org/10.3390/fermentation10020086. DOI: https://doi.org/10.3390/fermentation10020086
TRAN, N. N.; GELONCH, M. E.; LIANG, S.; XIAO, Z.; SARAFRAZ, M. M.; TIŠMA, M.; FEDERSEL, H-J.; LEY, S. V.; HESSEL, V. Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, v. 426, p. 131703, 2021. DOI: https://doi.org/10.1016/j.cej.2021.131703. DOI: https://doi.org/10.1016/j.cej.2021.131703
TRAN, Nam Nghiep et al. Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, v. 426, p. 131703, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cej.2021.131703. DOI: https://doi.org/10.1016/j.cej.2021.131703
VICENTE, G.; MARTINEZ, M.; ARACIL, J.; ESTEBAN, A. Kinetics of sunflower oil methanolysis. Industrial & Engineering Chemistry Research, v. 44, n. 15, p. 5447-5454, 2005. DOI: https://doi.org/10.1021/ie040208j. DOI: https://doi.org/10.1021/ie040208j
YANG, Xiaoguang et al. Improved production of 1, 3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chemical Engineering Journal, v. 349, p. 25-36, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cej.2018.05.042. DOI: https://doi.org/10.1016/j.cej.2018.05.042
YUSOFF, M. H. M.; AYOUB, M.; NAZIR, M. H.; SHER, F.; ZAHID, I.; AMEEN, M. Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and simulation study, Journal of Environmental Chemical Engineering, v. 9, 2021. DOI: https://doi.org/10.1016/j.jece.2021.105519. DOI: https://doi.org/10.1016/j.jece.2021.105519
ZAPATA, Betty Y. López et al. Different approaches for the dynamic model for the production of biodiesel. Chemical Engineering Research and Design, v. 132, p. 536-550, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cherd.2018.01.048. DOI: https://doi.org/10.1016/j.cherd.2018.01.048
ZHANG, Jun et al. High-Level Production of Recombinant Lipase by Fed-Batch Fermentation in Escherichia coli and Its Application in Biodiesel Synthesis from Waste Cooking Oils. Applied Biochemistry and Biotechnology, v. 195, n. 1, p. 432-450, 2023. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s12010-022-04146-6. DOI: https://doi.org/10.1007/s12010-022-04146-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência ET Praxis
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Esta obra está licenciada sob uma Licença Creative Commons.