UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

IMPLEMENTACAO DAS OPERACOES DE UMA
UNIDADE DE PONTO FLUTUANTE DE 32 BITS BASEADA
NO PADRAO IEEE 754 EM VERILOG

IMPLEMENTATION OF THE OPERATIONS OF A 32-BIT
FLOATING POINT UNIT BASED ON THE IEEE 754
STANDARD IN VERILOG

ERIKC JOSE FERREIRA SANTOS, KATIA LOPES SILVA, MAURO
HEMERLY GAZZANI

RESUMO

Uma UPF (Unidade de Ponto Flutuante) de forma geral € um coprocessador matematico, o
qual faz parte de um sistema computacional especialmente projetado para realizar operacdes
em numeros de ponto flutuante. As operacdes tipicas que sao tratadas pela UPF sao adicao,
subtracdo, multiplicacéo e divisdo. Este trabalho apresenta modelagem e simulacdo de uma
UPF de 32 bits usando a linguagem Verilog no ambiente da plataforma EDA Playground. A
UPF de 32 bits foi modularizada em quatro unidades funcionais, sendo uma para cada tipo de
operacéo (adi¢cdo, subtracao, multiplicacéo e divisdo). As unidades funcionais possuem uma
saida de 32 bits, que representa o resultado da operacdo realizada, e outra saida que
representa os sinalizadores (flags) que sinalizam o estado do resultado das unidades. O
principal foco deste trabalho é a andlise, projeto e implementacao da UFM (Unidade Funcional
de Multiplicacdo). A verificacao funcional foi realizada em uma bancada de teste (TestBench),
onde varios casos de testes foram simulados envolvendo situacfes que podem acontecer no
resultado da operacdo tais como: overflow, underflow e exceg¢Bes (NAN, infinito). Os
resultados apresentados pela UFM que a UPF de 32 bits implementa, demostram que ela
funcionou adequadamente para 0s casos de testes gerados.

Palavras chave: UPF 32 bits. Verilog. UFM, IEEE 754.

ABSTRACT

A FPU (Floating Point Unit) in general is a math coprocessor, which is part of a computer
system specially designed to perform operations on floating point numbers. Typical operations
that are handled by the FPU are addition, subtraction, multiplication, and division. This work
presents modeling and simulation of a 32-bit FPU using the Verilog language in the EDA
Playground platform environment. The 32-bit FPU was modularized into four functional units,
one for each type of operation (addition, subtraction, multiplication and division). The functional
units have a 32-bit output, which represents the result of the operation performed, and another
output that represents the flags (flags) that signal the state of the units' result. The main focus
of this work is the analysis, design and implementation of the FMU (Functional Multiplication

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 5

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

Unit). The functional verification was carried out in a test bench (TestBench), where several
test cases were simulated involving situations that can happen in the result of the operation
such as: overflow, underflow and exceptions (NAN, infinity). The results presented by the FMU
that the 32-bit FPU implements worked properly for the generated test cases.

Keywords: FPU 32 bits. Verilog. FMU, IEEE 754.

INTRODUCAO

Projetos de sistemas digitais usando Linguagens de Descricdo de Hardware
(Hardware Description Language - HDL) € um campo com grande potencial de
crescimento na atualidade. As aplicacdes dos projetos digitais estdo presentes em
nosso dia a dia, incluindo computadores, calculadoras e cameras de video etc.

A linguagem HDL permite projetar hardware digital utilizando um software.
Inegavel que uma grande economia de tempo € constatada ao projetar sistemas
usando uma HDL. Como ponto relevante pode-se citar o ganho em vantagem
competitiva, com a reducao do tempo de colocagédo no mercado de um sistema. Outra
vantagem é a possibilidade de realizar variadas simulacfes operacionais que
possibilitam ter um projeto otimizado antes da implantacao do sistema no hardware.
Desta forma, varios erros podem ser encontrados durante a simulacdo e suas
corregcdes implementadas, reduzindo os custos com hardware.

A linguagem Verilog, cuja padronizacdo atual é a IEEE 1364-2005, € uma HDL
usada para modelar sistemas eletrénicos. Um subgrupo da linguagem é tipicamente
utilizado para propdésitos de sintese e a linguagem completa pode ser utilizada para
modelamento e simulac&o. Verilog suporta a projecao, verificacdo e implementagao
de projetos analdgicos, digitais e hibridos em vérios niveis de abstracdo. Um dos
principais atributos da modelagem de circuitos por linguagem descritiva frente a
modelagem por captura de esquematico, esta ligado ao fato de que desta maneira o
projeto torna-se independentemente da plataforma de desenvolvimento (IDE) na qual
se esta trabalhando. Além disso, adotando-se as boas praticas na descricdo dos
circuitos, o compilador é inclusive capaz de contornar a auséncia de determinado
recurso na tecnologia onde o circuito sera sintetizado, conferindo uma portabilidade
desse modelo para qualquer dispositivo (target) onde pode ser sintetizado.
(CAVANAGH, 2010).

Segundo Sahu e Dev (2012), uma Unidade de Ponto Flutuante (UPF) de forma
geral € um coprocessador matematico, o qual faz parte de um sistema computacional
especialmente projetado para realizar opera¢cdes em nuameros de ponto flutuante. As
operacoes tipicas que séo tratadas pela UPF séo adicdo, subtracdo, multiplicacdo e
diviséo.

Do ponto de vista da arquitetura, a UPF é um coprocessador que opera em
paralelo com a unidade inteira do processador. A UPF obtém suas instrucbes da
mesma instrucdo decodificador e sequenciador e compartilha o barramento do
sistema. Além disso, unidade logica aritmética (ULA) e a UPF operam
independentemente e em paralelo. No caso da Intel, a microarquitetura de um
processador Intel varia entre as varias familias de processadores. Por exemplo, 0
processador Pentium Pro tem duas unidades inteiras e duas UPFs; enquanto, o

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 6

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

processador Pentium tem duas unidades inteiras e uma UPF, e o processador Intel486
tem uma unidade inteira e uma UPF. (INTEL,1999).

Este trabalho apresenta modelagem e simulacdo de uma UPF que executa as
funcBes bésicas com especial foco na operacdo de multiplicacdo. As atividades
envolvidas na implementacdo sdo: a manipulacdo de dados de ponto flutuante, a
conversdo de dados para o formato IEEE 754, a execucdo de qualquer uma das
operacdes aritméticas como adicdo, subtracdo, multiplicacéo.

ESTADO DA ARTE

DSPs (do inglés Digital Signal Processor) ou quaisquer outros processadores
gue envolvam operacdes complexas como multiplicacdo e/ou acumulacao operacdes
com alta precisao necessitam de Unidade de Ponto Flutuante (UPF) para garantir um
desempenho conveniente.

Uma unidade de ponto flutuante contém sequéncia de digitos em trés partes
gue é sinal, mantissa e expoente. O sinal pode ser positivo ou negativo, mantissa é
sequéncia de digitos e expoente € a poténcia de magnitude. A operacdo principal de
uma unidade de ponto flutuante inclui adicdo, subtracdo, multiplicacéo, divisédo e raiz
guadrada. A unidade de ponto flutuante pode ser de precisdo simples ou dupla.

O principal marco para teoria de ponto flutuante aconteceu em 1985 quando o
Padrdo para Aritmética de Ponto Flutuante Binario IEEE Std754 foi apresentado pelo
Institute of Electrical and Electronics Engineers (IEEE) e depois atualizado em 1990
pelo mesmo instituto. Neste padréo, atualmente recomendado também pelo ANSI
American National Standard Institute (ANSI), tem-se as normas a serem seguidas
pelos fabricantes de computadores e construtores de compiladores de linguagens
cientificas, ou de bibliotecas de funcfes matematicas, na utilizacdo da aritmética
binaria para nimeros de ponto flutuante. (IEEE,1985)

Cavanagh (2010) apresentou em seu livro a aritmética computacional para
pontos fixos, decimais, e representacdes de numeros de ponto flutuante para as
operactes de adicdo, subtracdo, multiplicacdo e divisdo, e para implementar essas
operacdes usando Verilog. As diferentes constru¢des de modelagem suportadas pelo
Verilog sdo descritas em detalhes. No caso de ponto flutuante, forma apresentados
os algoritmos para implementacéo das operacdes de adicéo, subtracao, multiplicacao
e divisdo, todas baseadas no padrdo do Instituto de Engenheiros Elétricos e
Eletrénicos (IEEE) para Aritmética de Ponto Flutuante Binario IEEE Std 754-1985.
Todos os algoritmos foram implementados utilizando a linguagem Verilog.

Sahu e Dev (2012) publicaram em seu trabalho de graduagéo em Ciéncia da
computacéo do National Institute Of Technology Rourkela na india, a modelagem e
implementacéo de uma Unidade de ponto flutuante baseada no padréo IEEE 754. A
implantagcdo mostrou-se bastante eficiente e executa as func¢des bésicas e
transcendentais com uma reduzida complexidade quando comparada com as
implementagdes da familia x87 do fabricante Intel. As velocidades de clock ficaram
proximas, porém a utilizacdo de memoria foi bastante reduzida.

Ziaullah e Munaff (2015) implementaram operacdes tipicas de uma UPF. As
funcdes executadas foram a manipulagcéo de dados de ponto flutuante, converséo de
dados para o formato IEEE 754, execucao de qualquer uma das seguintes operagcdes

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 7

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

aritméticas como adicéo, subtracdo, multiplicacéo, divisdo. Todos os algoritmos foram
avaliados no ambiente Modelsim. Segundo os autores, todas as fungdes foram
construidas por algoritmos com diversas mudancas incorporadas.
Consequentemente, todas as fun¢des da unidade sao Unicas em certos aspectos, e
essas funcbes tenderdo a mostrar eficiéncia e velocidade comparaveis e, se
canalizadas, maior taxa de transferéncia. Na verdade, os autores ndo deixam muito
claro as mudancas realizadas, mostrando apenas os resultados atingidos.

Upendar (2018) apresentou uma implementacdo ASIC (Aplication Specifi
Integrated Circuit) de alta velocidade de uma unidade de ponto flutuante que pode
executar funcdes de adicao, subtracdo, multiplicacdo e divisdo em operandos de 32
bits que usam o padrdo IEEE 754. As Unidades de pré-normalizacdo e poés-
normalizacdo também sao discutidas juntamente com sua manipulacdo. Todas as
funcBes sdo construidas por algoritmos eficientes viaveis com diversas mudancas
incorporadas que podem melhorar a laténcia geral e, se for canalizado, maior taxa de
transferéncia. No caso da multiplicacdo, o algoritmo Booth foi utilizado, pois este
oferece uma forma mais eficiente de multiplicar inteiros binarios com muito menos
operacOes de adicao/subtracdo. Os algoritmos sdo modelados em Verilog HDL e o
cédigo RTL para somador, subtrator, multiplicador, sdo sintetizados usando HDL
designer series e XILINX.

Savaliya e Rudani (2020) implementaram um UPF, baseada no padrao IEEE
754, para valores de ponto flutuante de precisédo simples de 32 bits. A principal
aplicacao desta UPF esta no processador DSP, para o processamento de sinais, onde
€ necessario um valor com alta precisédo e por se tratar de um processo iterativo, 0
calculo deve ser o mais rapido possivel. Este projeto apresenta a implementacao de
uma unidade aritmética de virgula flutuante eficiente de 32 bits usando Verilog com o
objetivo de analisar o problema durante a implementacdo e entender a forma de
contornar o problema a fim de melhorar o desempenho do sistema. Os resultados
mostraram-se satisfatorios e 0s autores sugeriram como trabalho futuro a
implementacdo de um conversor, para realizar a conversao da saida em forma IEEE
754 em representacao decimal e fornecer a saida como um sistema numérico decimal.

Maladkar e Aradhya (2021) desenvolveram uma unidade de ponto flutuante
otimizada para que o atraso fosse reduzido e a eficiéncia fosse aumentada. A unidade
de ponto flutuante foi escrita de acordo com o padréo IEEE 754 e todo o projeto foi
codificado em Verilog HDL e simulado com Xilinx 14.7 (2022). Na proposta, a
eficiéncia do projeto é aumentada com menos atraso computacional em comparacao
com um meétodo tradicional. Os resultados sdo melhorados em 12% com o uso do
multiplicador védico que € um atraso de 4.450ns em comparac¢do com 5.123ns com
um multiplicador de matriz. O projeto pode ser usado em computacdo matematica,
processamento de sinais, graficos e outros que necessitam de melhor velocidade de
calculos e operacfes que envolvem ponto flutuante.

FUNDAMENTACAO TEORICA
Linguagem Verilog

A linguagem Verilog é uma linguagem de descricdo de hardware (HDL) que
fornece um meio de especificar um sistema digital em uma ampla gama de niveis de

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 8

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

abstracdo. A linguagem suporta 0s estagios conceituais de projeto com sua fase
comportamental de abstracdo, e o estagio posterior de implementacdo com suas
abstracdes estruturais. A linguagem inclui constru¢cdes hierarquicas, permitindo ao
desenvolvedor controlar a complexidade de uma descri¢ao.

Foi originalmente projetado entre 1983 e 1984 como um produto proprietario de
verificacdo e simulagdo. Mais tarde, varias outras ferramentas de andlise foram
desenvolvidas em torno da linguagem, incluindo um simulador de falhas e um
analisador de tempo. Mais recentemente, a Verilog também forneceu a especificacéo
de entrada para ferramentas de sintese l6gica e comportamental. A linguagem Verilog
tem sido fundamental para fornecer consisténcia entre essas ferramentas. A
linguagem foi padronizada primeiramente como padréo IEEE 1364-1995. Atualmente
a padronizacéao vigente € o IEEE 1364-2005.

As etapas de uma simulacdo sdo mostradas na figura 1 na qual pode-se notar
o fluxo de uma formacéo de um cédigo em Verilog.

Figura 1- Viséo geral da simulagdo em Verilog

FLUXO DE SIMULACAO
MODELO BIBUSJECA VERILOG
VERILOG TECNOLOGIA TESTEENCH

v A J A 4

[COMPILADOR SIMULADOR]

COMPILADOR DE SIMULACOES

| — o)
SIMULADOR > g
y [oor v]

Fonte: Modificado de Altera Corporation (2008)

As descri¢des estruturais do Verilog sdo compostas de varios blocos de cédigo
e permitem a introducdo de hierarquia em um projeto (Figura 2). Os elementos da
estrutura do programa sdo: o modulo, a porta e o sinal. Um modelo (sistema) em
Verilog é composto de modulos (componentes). Desta forma, como mostrado na
figura 2 tem-se que um sistema pode ser composto de varios componentes 0s quais
podem ser compostos de subsistemas. Os sistemas instanciam os componentes 1 e
2 e este Ultimo instancia o subsistema 3.

Figura 2 - Estrutura de um programa em Verilog

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 9

UNDADE | 28 Intercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

Fonte: Modificado de LaMeres (2019)

Em Verilog, um componente é representado por um modulo, que é a unidade
basica. A declaracdo do médulo fornece a visdo "externa" do componente; ele
descreve o que pode ser visto de fora, incluindo as portas dos componentes. O corpo
do médulo fornece uma visdo "interna"; descreve o comportamento ou a estrutura do
componente.

Um mddulo representa um texto de declaracao que detalha a funcao do médulo
utilizando as construcdes Verilog. Ele representa através de comandos e estruturas
da linguagem a estrutura fisica do hardware e seu comportamento. Desta forma, o
maddulo em Verilog manipula as entradas e produz as saidas do circuito logico.

Conforme Cavanagh (2010), Verilog possui elementos logicos predefinidos
chamados primitivos. Esta I6gica embutida primitivos sdo elementos estruturais que
podem ser instanciados em um projeto maior para formar uma estrutura mais
complexa. Exemplos de primitivas logicas integradas sdo as operacdes légicas de
AND, OR, XOR e NOT.

Ponto Flutuante e o Padrao IEEE 754

Em, 1985, o padrdo IEEE 754 para aritmética de ponto flutuante foi
estabelecido e, desde a década de 1990, as representacfes mais comumente
encontradas sao aquelas definidas pelo IEEE.

A UPF da arquitetura Intel (I1A) fornece recursos de processamento de ponto
flutuante de alto desempenho. Ele suporta os tipos de dados real, integer e BCD-
integer e os algoritmos de processamento de ponto flutuante e arquitetura de
tratamento de excecao definidos no IEEE padrbes 754 e 854 para aritmética de ponto
flutuante. A UPF executa as instrugdes do fluxo de instru¢bes normal do processador
e melhora muito a eficiéncia dos processadores em lidar com os tipos de operacdes

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 10

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

de processamento do ponto flutuante de alta precisdo comumente encontradas em
aplicacoes cientificas, de engenharia e de negadcios. (INTEL,1999).

Cada geracdo de UPFs das arquiteturas de computadores atualmente sao
projetadas para fornecer estabilidade, resultados precisos quando programados
usando algoritmos simples de “lapis e papel”, trazendo a funcionalidade e o poder da
computacdo numeérica precisa para o usuario final. O padrdao IEEE 754 aborda
especificamente essa questao, reconhecendo a importancia fundamental de tornar os
calculos numeéricos faceis e seguros de usar. Viana (2022) descreve o padrédo IEEE
754

O padrao IEEE 754, recomendado pelos institutos ANSI (American
National Standard Institute) e IEEE (Institute of Electrical and Eletronic
Engineers), refere-se as normas a serem seguidas pelos fabricantes
de computadores e construtores de compiladores de linguagens
cientificas, ou de bibliotecas de fun¢cdes matematicas, na utilizacdo da
aritmética binaria para nimeros de ponto flutuante. As recomendacdes
sdo relativas ao armazenamento de dados numéricos, métodos de
arredondamento, tratamento de casos de underflow e overflow, formas
de realizacdo das quatro operacdes aritméticas basicas e
implementacdo de funcbes nas linguagens de programacao.
(VIANA,2022)

Para aumentar a velocidade e a eficiéncia dos célculos de numeros reais, 0s
computadores ou UPFs normalmente representam numeros reais em um formato
binario de ponto flutuante. Neste formato, um nimero real tem trés partes: um sinal,
um significativo e um expoente. A figura 3 mostra o formato binario de ponto flutuante
em precisao simples (32 bits). Desta forma, N = s + e + f, corresponde ao tamanho da
palavra em bits. No caso da precisdo simples: s =1, e =8 e f = 23 bits, totalizando
N = 32 bits.

Figura 3 — Formato binario de ponto flutuante

5 e f=ddyds.....dh
sinal expoente Mantissa
1 hit 8 bits 23 hits

Fonte: INTEL (1999)

Um ponto muito importante do padrdo IEEE 754 estd relacionado com o
expoente. Para facilitar as implementacdes, o expoente é polarizado (bias em inglés),
ou seja, trabalha-se sempre com expoente positivo. Deste modo, para o caso de 32
bits o padrdo recomenda somar 127 ao expoente.

O padréo IEEE 754 trabalha com o nimero em ponto flutuante normalizado, ou
seja, o primeiro digito (d1) deve ser diferente de zero para assegurar a unicidade de

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 11

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

representacdo, e manter sempre a precisdo maxima suportada pela mantissa (Vianna,
2022).

A figura 4 mostra um exemplo de um ndmero decimal em formato IEEE 754 na
base 2:

Figura 4 — Exemplo de um numero no formato IEEE 754 normalizado e
polarizado

N = -7 (base 10)
1 Etapa — Sinal do nimero: s = 1 (negativo)
2 Etapa — Transformar para base 2 = 111 = 1,11.22
3 Etapa — Escrever a Mantissa na base 2 com 23 bits: 11000000000000000000000
4 Etapa — Escrever o expoente polarizado (somar 127): 2+127 = 129
5 Etapa — Transformar o expoente (no caso 129) para base 2 com oito bits = 10000001

Nuamero final normalizado e polarizado:

1 10000001 11000000000000000000000
sinal expoente Mantissa

Fonte: Autor

O padrdo IEEE 754 possui algumas classes especiais de representacdo para
atender os resultados de operagcfes aritméticas que nao sdo suportadas pelos
computadores; como por exemplo: divisdo por zero, overflow. Nestes casos tem-se as
representac6es mostradas no quadro 1.

Quadro 1 — Classes especiais de representacdo do Formato IEEE754

Caso Sinal Expoente Ndo | Expoente Mantissa Significado
Polarizado Polarizado
Zeros 0 -127 0 0 +0
Zeros 1 -127 0 0 -0
Infinitos 0 128 255 0 +00
Infinitos 1 128 255 0 —o0
NaN (Not a louO 128 255 #0 excegoes,
Number) invariavelmente,
intrataveis
N&o 1ou0 | -126 (ndo vale 0 O0.f1f2fs..fas Util para
Normalizado 0 127) ndmeros
pequenos

Fonte: Autor

Unidade de Ponto Flutuante (UFP)

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 12

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

Uma unidade de ponto flutuante (UPF, coloquialmente um coprocessador
matematico) € uma parte de um sistema de computador especialmente projetado para
realizar operacdes em numeros de ponto flutuante. As operacdes tipicas sdo adicéao,
subtracdo, multiplicacdo, divisdo e outras, conforme a implementacéao.

Qualquer operacdo matematica, como adi¢do, subtracdo, multiplicacdo ou
divisdo, pode ser realizada pela unidade de processamento de inteiros ou pela UPF.
Quando uma CPU recebe uma instrugdo, ela a envia automaticamente para o
processador correspondente. Por exemplo, 20 + 3 seria processado como um calculo
inteiro pela Unidade Logica Aritmética (ULA), enquanto 20,3245 + 3,789 seria enviado
para a UPF.

Na computacdo, uma UPF é usada para representacdo de formulas de
nameros reais como uma aproximacao para oferecer suporte a uma compensacao
entre intervalo e precisdo. Frequentemente usada em sistemas com nameros reais
muito pequeno ou grande que requerem tempos de processamento rapido. Em geral,
um numero de ponto flutuante € representado com um numero fixo de digitos
significativos e escalado usando um expoente em alguma base fixa; a base para a

escala é normalmente dois, dez ou dezesseis.

Figura 5 - Visao geral da UPF

A[31:0] B[31:0]

ey 2 CEPtiON

Caodigos
de " overflow o

Operagio S[1:0] —> Unidade Ponto Flutuante 32 Bits Sinalizadores

{pF32} f——=t divisdo por zero (Flags})

f——=t underflow

F[31:0]

Fonte: Autor

A Figura 5 ilustra a visdo geral da UPF de 32 bits, onde as entradas A e B de
32 bits representam o0s operandos, e a entrada de 2 bits representa os cédigos de
operacéo (adicédo, subtracdo, multiplicacédo e divisdo). Os dois bits combinados S1 e
SO (00: adigéo, 01: subtracdo, 10: multiplicagdo e 11: divisdo) identificam a unidade
funcional da UPF que realiza a operacéo correspondente. O sinal de saida F de 32
bits representa o resultado da Ultima operacéo realizada pela UPF, e os outros 3 bits
de saida sinalizam o estado do resultado da UPF.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 13

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

PROJETO DA UPF DE 32 BITS

A UPF de 32 bits € modularizada em unidade funcionais e ilustrada na figura 6.
As quatro unidades funcionais sdo denominadas como seguem: Unidade Funcional
de Adicao (UFA), e a Unidade Funcional de Subtracdo (UFS), Unidade Funcional de
Multiplicagdo (UFM) e Unidade Funcional de Divisao (UFD). As 2 entradas de 32 bits
representam os operandos das respectivas unidades funcionais. Cada uma das
unidades funcionais possui uma saida de 32 bits, que representa o resultado da
operacdo realizada, e outra saida que representa os sinalizadores (flags) que
sinalizam o estado do resultado das unidades. O MUX 4:1 utiliza os bits S1 a SO para
selecionar a saida de qual unidade sera aquela da UFP.

Figura 6 - Unidades Funcionais da UPF de 32 Bits

.01 » Flags
Al31:0] Unidade Funcional de

B[31:0] Adicio

A[31:0]

Unidade Funcional de

B[31:0] Subtracio
A[31:0
[] Unidade Funcional de o N;;”;:xj' F[31:0]
B[31:0] Multiplicagao 2 fts »
Selecao
A[31:0
[] Unidade Funcional de s[1:0]

B[31:0] Divisdo

Fonte: Autor

O principal foco deste trabalho € a analise, projeto e implementacédo da Unidade
Funcional de Multiplicacdo. Para multiplicar dois nimeros em ponto flutuante, 1.f1 x
2el * 1.f2 x 2e2 (onde el e e2 sdo expoentes ja polarizados), os seguintes passos
sdo necessarios: [1] Verificar se todos os bits de el ou e2 sejam iguais a zero, e,
portanto, o numero esta desnormalizado e o bit implicito da mantissa correspondente
é definido como 0 (0.f x 2e) formando uma mantissa de 24 bits. Caso contrario, 0
namero esta normalizado e bit implicito € definido como 1 (1.f x 2e);[2] Multiplicar as
Mantissas incluindo o bit implicito; [3] Somar os expoentes: somar el com €2 e subtrair
127 (01111111) para eliminar a dupla polarizagdo no resultado, e1+e2-01111111>; [4]
Obter o sinal do produto: s1 XOR s2; [5] Normalizar o resultado, se necessario (como
por exemplo o resultado da multiplicacéo seja igual a 10.xxxx..x. Neste caso desloca-
se o ponto decimal uma vez para a esquerda e soma-se 1 ao expoente determinado
no passo 3); [6] Arredondar o resultado para caber nos bits disponiveis da mantissa,
no caso 23 bits; [7] Determinar os flags de ocorréncia de underflow/overflow, ou se a
operacdao é invalida.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 14

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

A Figura 7 mostra um diagrama de blocos desta unidade, ndo inclusa a
determinacao dos flags citados no passo 7 no paragrafo anterior.

Figura 7 — Visdo geral da Unidade Funcional de Multiplicacdo (UFM)

Sinal Expoente Mantissa Sinal Expoente Mantissa
[bit| sbits | 23 bits | [1bit| sbits | 23 bits

Expoente | Expoente Inclusdo do bit implicito

polarizado | polarizado Inclusdo do bit implicito
v v

Somador
8 hits
1127

Multiplicador
24x24

v

Normalizagdo e
Subtrator /g i a dupla polarizagio do expoente arrendodamento
8 hits I

fbit| sbits | 23 bits |
Sinal Expoente Mantissa

Fonte: Autor

Os cédigos dos médulos em Verilog descritos sdo mostrados nas figuras 8 e 9
para Unidade funcional de multiplicacdo 32 Bits.

A implementacdo em linguagem Verilog pode ser realizada com varios IDEs
baseados em Verilog com FPGAs Altera e Xilinx (2022) que sédo suportados pelo
Altera Quartus Il e Xilinx ISE IDEs disponiveis no mercado. No caso deste trabalho foi
utilizado o EDA Playground (2022).

O EDA Playground possui um ambiente online para simular (utilizando varios
simuladores disponiveis: o usuéario pode escolher qual deseja utilizar) e sintetizar
implementacdes nas linguagens SystemVerilog, Verilog, VHDL, C ++ / SystemC e
outros HDLs. Os resultados das simulacbes podem ser visualizados na forma de
ondas usando o visualizador de ondas baseado em navegador EPWave e por meio
de definicbes de casos de teste no Test Bench.

Figura 8 — Cddigo Verilog da Unidade Funcional de Multiplicagédo — Parte 1

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 15

UNDADE | 28 Intercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

/7 0 mbdule de multplicagfo em formato IEEE 754 com os expoentes polarizados.
/7 sinal = opd[31] positivo: @ negativo: 1

// expoente = opd[30:23] polarizado com excesso 127

// mantissa = opd[22:8]

module mult_pf(a,b,mult,exception,underflow,overflow);

input [31:@] a, b; // operandos
output overflow,underflow,exception; // flags
output [31:8] mult; // resultado da multiplicagdo des operandos

wire sinal,round,normalisado,zero,infinity;
wire [8:0] expoente,soma_expoente;

wire [22:0] produto_mantissa;

wire [23:0] opd_a,opd_b;

wire [47:0] produto,produto_normalisado;

assign sinal = a[31] » b[31]; // XOR do 320 bit
// Operagdo invdlida
assign exception = (&a[30:23]) | (&b[30:23]); // exception = 1 : expoente de a ou b igual a 255

// Para reduzir a perda de precisdo guando ocorre um underflow, o formato IEEE 754 inclui a capacidade
// de representar mantissas menores do que sdo possiveis na representacdo normalizada, tornando

// o digito inicial implicite um @.

// Se todos os bits de E1 ou EZ2 forem @ —=> 0 nimero é desnormalizado e o bit implicito da mantissa
// correspondente é definido como 9.

assign opd_a = {la[3@:23],a[22:01}; // mantissa de 24 bits ¢/ bit implicito

assign opd_b = {I1b[30:23],b[22:0]};

// multiplicande a e b com o bit implicito da mantissa correspondente
assign produto = opd_a * opd_b;

Fonte: Autor

Figura 9 - Cdadigo Verilog da Unidade Funcional de Multiplicacéo — Parte 2

// multiplicando a e b com o bit implicito da mantissa correspondente

assign produto = opd_a * opd_b;

// OR para todos os bits dos Gltimos 22 bits para proposito de arredondamento

assign round = |produto_normalisado[22:0];

assign normalisado = produto[47];

// normalizac¢do baseade no 48o bit

assign produto_normalisado = normalisado 7 produto : produto << 1;

assign produto_mantissa = produto_normalisado[46:24] + (produto_normalisado[23] & round);
assign zero = exception 7 1'b@ : ((produto_mantissa == 23'd@) 7 1'bl : 1'b@);

assign soma_expoente = a[38:23] + b[30:23];

//remove uma polarizacéc - polarizacdo dobrada devido & soma
assign expoente = soma_expoente - 8'd127 + normalisado;

// Se expoente = 255 e mantissa = @, entdo infinite. 0 bit de sinal define o +/-.

// o overflow ocerre quando uma operagdo aritmética resulta

// em uma magnitude moicr do que pode ser expressa com um expoente de 128

// exemplo: 2**120 * 2**10Q = 2%%220

// Se soma dos expoentes polarizados maior gue 255 entdo overflow

assign overflow = ((expoente[8] & lexpoente[7]) & l!zero);
// o underflow ocerre quando a mugnltude fraciondria é muito pequena com um expoente abaixo de -127
// exemplo: 2**-12@ * Z2**-100 = 2**-220
// soma dos expoentes polarizados menor que 255 entdo underflow

assign underflow = ((expoenteLSJ & expoente[7]) & !zero) 7 1'bl : 1'b@;

assign mult = exception ? 32'd@ : (zero 7 {sinal,31'd@} : Coverflow 7 {sinal,8'hFF,23'de} :

|(under‘F'|.ow ? {smal 31'de} : {smal expoente7:0],produto_mantissal)));

endmodule

Fonte: Autor

RESULTADOS E DISCUSSAO

Conforme LaMeres (2019) um dos componentes essenciais do fluxo do projeto
digital moderno é verificar a funcionalidade por meio simulacdo. Essa verificacao
funcional é realizada em uma bancada de teste (TestBench). Uma bancada de teste
€ um modelo Verilog que instancia o sistema a ser testado como um subsistema, gera
0s padrdes de entrada para conduzir o subsistema e observa as saidas. Bancadas de
teste sdo usadas apenas para simulacdo, para que se possa usar técnicas de
modelagem abstratas que néo sao sintetizaveis para gerar os padrdes de estimulo.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 16

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

As construcdes sintaticas em Verilog podem ser usadas para relatar o status de um
teste e verificar automaticamente se as saidas estéo corretas.
Quadro 2 — Casos de Testes da UFM de 32 Bits

Caso de teste D ETED Saida esperada

Multiplicagdoa * b a = 40C9999A (+6,3) mult = 00000000

#1 b = +infinity* exception! = 1
Multiplicagdoa * b a = 7B86DO0AA (+1.39999997806e+36) mult = 00000000

#2 b = 71834436 (+1.299999944e+30) overflow? =1
Multiplicacdoa * b a=4234851F (+45,13) _

#3 b = 427C851F (+63,13) = AEEPAIEIE)

Multiplicagdoa * b

a = 4049999A (+3,15)

mult = C2355062

#4 b =C1663D71 (-14,39)
Multiplicagcdoa * b a = C1526666 (-3.15) N

#5 b = C240A3D7 (-48,16) 1SS EARIZERTE
Multiplicagdoa * b a =41C80000 (+25,0) _

#6 b = 42480000 (+50,0) mult = 449C4000

Multiplicacdoa * b a =3ACA62C1 (+0.00154408081) mult = 361FFEE7

#7 b = 3ACA62C1 (+0.00154408081)
Multiplicagdoa * b a =037F3637 (+7.50000004534e-37) mult = 00000000
#8 b =0D7D1FDD (+7.79999981785e-31) underflow® =1
Multiplicagdo a * b a = 00000000 (0
P #9"' 00000000 ((o)) mult = 00000000
Multiplicacdoa * b a = 7F800000 (+infinity?) mult = 00000000
#10 b = 00000000 (0) exception! =1
Multiplicacdoa * b a = 7F800000 (+infinity?) mult = 00000000
#11 b = 7F800000 (+infinity?) exception® = 1

lexception: operagdo invalida. 2overflow: ocorre quando uma operagéo aritmética resulta em uma
maghnitude maior do que pode ser expressa com um expoente de 128. Exemplo: 24120 * 27100 =
27220.

Sunderflow: ocorre quando a magnitude fracionaria € muito pequena com um expoente abaixo de -
127. Exemplo: 27"-120 * 2°-100 = 27-220. “+infinity: infinito positivo.

Fonte: Autor

O quadro 2 mostra 11 casos de testes que serdo simulados para a Unidade
Funcional de Multiplicacdo (UFM). Deve-se observar que todos os numeros
hexadecimais estdo em formato IEEE 754 32 bits com expoentes polarizados.

Os casos de teste projetados no quadro 2 servirdo como bancada de testes
para a simulacdo dos resultados para casos tipicos de multiplicacdo, casos que
resultam em operacdes invalidas, e os casos para simular overflow e underflow.

Uma bancada de teste € um arquivo em Verilog que ndo possui entradas ou
saidas. A bancada de testes instancia o sistema a ser testado como um maodulo de
nivel inferior. O sistema que estad sendo testado € frequentemente chamado de
dispositivo em teste (DUT) ou unidade em teste (UUT).

O codigo Verilog da bancada de teste para a simulacdo para a unidade
funcional de multiplicacdo € mostrado nas figuras 10 e 11.

Figura 10 - Cddigo da Bancada de Teste — UFM - Parte 1

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 17

UNDADE | 28 Intercursos Revista Cientifica
ITUIUTABA | Uemc Ciéncias Exatas

// mddulo de testbench para simulacdéo da unidade de multiplicacgiio em ponto flutuante de 32 bits
“timescale 1ns / 1ns

module mult_tb;

reg [31:8] a,b;

wire overflow,underflow,exception;
wire [31:@] mult;

mult_pf dut(a,b,mult,exception,underflow,overflow); // dut: design under test

initial

begin
$dumpfile("upf32.vcd");
$dumpvars;

// Caso de Teste #1

a = 32"h48(9_999A;

b = 32'"h7F80_000@; // 6.3 * +infinity = exception
#1;

// resultado: @x48C9_999A * +infinity = exception

// Caso de Teste #2

a = 32'h7BE6_DOAA;

b = 32'h7183_4436;

// resultado: overflow
#1;

// Caso de Teste #3

a = 32'h4234_B51F;

b = 32'h427C_851F; // 45.13 * 63.13 = 2849.0569
#1;

//’re5u1tado:9x4234_351F * Px427C_851F

Fonte: Autor

Figura 11 - Codigo da Bancada de Teste — UFM - Parte 2

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 18

UNIDADE | 28 Intercursos Revista Cientifica
ITUIUTABA | UeMc Ciéncias Exatas

// Caso de Teste #4

a = 32'h4049_999A;

b = 32'hC166_3D71; // 3.15 * -14.39 = -45.3285

// resultado: 0x4049_999A * 0x(166_3D71 = 0x(C235_5063
#1;

// Caso de Teste #5

a = 32'h(152_6666;

b = 32'h(240_A3D7; // -13.15 * -48.16 = 633.304

// resultado: OxC152_6666 * Ox(C240_A3D7 = Ox441E_5374
#1;

// Caso de Teste #6

a = 32'h41(8_0000;

b = 32'h4248_0000; // 25 * 50 = 1250

// resultado: Ox41C8_0000 * 0x4248_0000 = 0x449C_4000
#1;

// Caso de Teste #7

a = 32'h3ACA_62(C1;

b = 32'h3ACA_62C1; // ©.00154408081 * 0.00154408081 = 0.00000238418
// resultado: @x3ACA_62C1 * Ox3ACA_62C1 = Ox361F_FFFF

#1,

// Caso de Teste #8

a = 32'h@37F_3637;

b = 32'h@D7D_1FDD; // +7.50000004534e-37 * +7.79999981785e-31
// resultado: 0x037F_3637 * 0x0D7D_1FDD = underflow

#1;

// Caso de Teste #9

a = 32'h0000_0000;

b = 32'h0000_0000; // @ * B = 0;
// resultado: 0.0

#1;

// Caso de Teste #10

a = 32'h7F80_0000;

b = 32'h0000_0000; //+infinity * 0.0

// resultado: +infinity * 0x0000_0000 = exception
#1;

// Caso de Teste #11

a = 32'h7F80_0000;

b = 32'h7F80_0000; // +infinity * +infinity

// resultado: Ox7F80_0000 * 0x7F80_0000 = exception
#1;

$finish;

end
endmodule

Fonte: Autor
As figuras 12 e 13 mostram os resultados da simulagéo para a banca de testes
descritos no quadro 2 para a UFM.

Figura 12 - Resultados da Simulacao dos casos de teste — Parte 1

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 19

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

al3L:01
b3L:0]

P —" — T ——
maBL0] 0 | 00 y |c235 5063 {#dle 5374
overflow

underflow

exception

Fonte: Autor
Figura 13 - Resultados da Simulag¢do dos casos de teste — Parte 2

#6 #7 #H8 #9 #10 #11

ik el {haca_62c1 311 3637 10 1180_0000
b0 4 { d1d_lidd

Jaca_62cl

e |

md3E0) e 4000 Bele ot 0
overflow

underllow

exception

Fonte: Autor

O tempo total de simulacéo foi de 11 ns, sendo simulado 1 ns para cada um
dos testes. A simulacdo da UFM teve o comportamento esperado de seus resultados
em todos os seus testes conforme previsto nha bancada de testes do quadro 2, e como
pode ser visto tanto no resultado para os casos tipicos (#3 a #7 e #9), os casos de
underflow (#8), e os casos de operacdes invalidas (#1, #10 e #11).

CONSIDERACOES FINAIS

Este trabalho apresenta modelagem e simulacdo de uma UPF que executa as
funcdes béasicas com especial foco na operacdo de multiplicacdo. As atividades
envolvidas na implementacdo sdo: a manipulacdo de dados de ponto flutuante, a
conversdo de dados para o formato IEEE 754, a execucdo de qualquer uma das
operacdes aritméticas como adicdo, subtracdo, multiplicacéo.

A unidade funcional de multiplicacdo foi implementada em linguagem Verilog
utilizando a plataforma EDA Playground. Varios casos de testes envolvendo situacdes
gue podem acontecer no resultado da operagéo tais como: overflow, underflow e
excecdes (NAN, infinito).

Os resultados apresentados pela Unidade funcional de multiplicacdo que a UPF
de 32 bits implementada pelo método e cddigo descritos funcionou adequadamente
para os casos de testes gerados.

Como sugestdo de trabalhos futuros a partir desta implementacdo sao
sugeridos: implementacdo de um algoritmo védico na operagao de multiplicacéo e a
implementacgéo das operagdes de adicéo, subtracdo e diviso.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 20

UNDADE | 28 Inmtercursos Revista Cientifica
ITUIUTABA | Ueme Ciéncias Exatas

REFERENCIAS

ALTERA CORPORATION. Verilog HDL Basis. 2008. Disponivel em
<http://www.ee.ic.ac.uk/pcheung/teaching/ee2_digital/Altera%20Tutorial%20-
%20Verilog%20HDL%20Basic.pdf >. Acesso em: 03 mar. 2022.

CAVANAGH, Joseph. Computer Arithmetic and Verilog HDL Fundamentals. Boca
Raton: CRC Press Taylor & Francis Group, 2010.

EDA Playground. Disponivel em: https://edaplayground.com. Acesso em: 28 de mai.
de 2022.

INTEL. Intel Architecture Software Developer’s Manual. 1999. Volume 1: Basic
Architecture. Disponivel em <https://www.cs.cmu.edu/~410/doc/intel-arch.pdf>.
Acesso em: 24 de mai. 2022.

LAMERES, Brock J. Quick Start Guide to Verilog. Cham, Switzerland: Springer

MALADKAR , Kishan; ARADHYA , Ravish. Design and Implementation of a 32-bit
Floating Point Unit. International Journal for Research in Applied Science &
Engineering Technology (IJRASET), 2021, Vol. 9, Issue IV. e Published Online Dec.
2021 in RASET Journals. Disponivel em <
https://www.ijraset.com/fileserve.php?FID=35052 >. Acesso em: 02 de jun. 2022.

SAHU, L.; DEV, R. An efficient IEEE 754 compliant floating point unit using
Verilog. 2012. A Thesis Submitted for The Partial Fulfiiment of Requirements for
Degree of Bachelor of Technology IN Computer Science and Engineering- Department
of Computer Science and Engineering National Institute of Technology Rourkela
Rourkela - 769008, India, 2012. Disponivel em <
http://ethesis.nitrkl.ac.in/3638/1/thesis_final.pdf >. Acesso em: 24 de mai. 2022.

SAVALIYA, Yagnesh; RUDANI, Jenish. Design and Simulation of 32-Bit Floating Point
Arithmetic Logic Unit using Verilog HDL. International Research Journal of
Engineering and Technology (IRJET)), 2020, Vol. 7, Issue 12. E-Published Online
Dec. 2020 in IRJIET Journals. Disponivel em <
https://www.irjet.net/archives/V7/i12/IRJET-V7112262.pdf >. Acesso em: 25 de mai.
2022.

UPENDAR, S. Design and implementation of floating point Unit using VERILOG.
Journal of Advanced Research in Technology and Management Sciences, 2018,
Vol. 00, Issue 1. e Published Online Dec. 2018 in Artms Journals. Disponivel em <
http://jartms.org/view_issue.php?titte=DESIGN-AND-IMPLEMENTATION-OF-
FLOATING-POINT-UNIT-USING-VERILOG >. Acesso em: 20 de mai. 2022.

VIANA, G. V. R. Padrao IEEE 754 para aritmética binaria de ponto flutuante.
Universidade Estadual do Ceara-Departamento de Estatistica e Computacao.
2022.UFCE. (Apostila). Disponivel em <
https://www.lia.ufc.br/~valdisio/download/ieee.pdf >. Acesso em: 24 de mai. 2022.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 21

http://jartms.org/view_issue.php?title=DESIGN-AND-IMPLEMENTATION-OF-FLOATING-POINT-UNIT-USING-VERILOG
http://jartms.org/view_issue.php?title=DESIGN-AND-IMPLEMENTATION-OF-FLOATING-POINT-UNIT-USING-VERILOG

UNDADE | 22 Intercursos Revista Cientifica
ITUIUTABA | uemc Ciéncias Exatas

XILINX. Verilog Reference Guide. 1999. Disponivel em:
http://in.ncu.edu.tw/ncume_ee/digilogi/vhdl/Verilog_Reference_Guide.pdf. Acesso
em: 22 de jun. 2022.

ZIAULLAH, M.; MUNAFF, A. Design and Implementation of Floating Point ALU with
Parity Generator Using Verilog HDL. IOSR Journal of VLSI and Signal Processing,
2015, Vol. 5, Issue 1, Ver. 1. e-ISSN: 2319 — 4200, p-ISSN No.: 2319 — 4197 Published
Online Sep. 2015 in losr Journals. Disponivel em < https://www.iosrjournals.org/iosr-
jvisi/papers/vol5-issueS/Version-1/105515459.pdf >. Acesso em: 19 de mar. 2022.

AUTORES:

ERIKC JOSE FERREIRA SANTOS, graduando do Curso de Engenharia Elétrica na
Universidade do Estado de Minas Gerais — UEMG, Unidade ltuiutaba. E-mail:
erikc.1536059@discente.uemg.br.

MAURO HEMERLY GAZZANI, doutor em Engenharia Elétrica pela Universidade
Federal de Uberlandia. Bacharel em Engenharia Elétrica pela Universidade Federal
de Uberlandia. Professor do Curso de Graduacdo em Engenharia Elétrica da
Universidade do Estado de Minas Gerais — UEMG, Unidade ltuiutaba. E-mail :
mauro.gazzani@uemg.br.

KATIA LOPES SILVA, Docteur en Sciences Appliquées pela Université de Liége.
Bacharel em Engenharia Quimica pela Universidade Federal de Uberlandia.
Professor do Curso de Graduacdo em Engenharia Elétrica da Universidade do Estado
de Minas Gerais — UEMG, Unidade Ituiutaba. E-mail: katia.lopes@uemag.br.

Intercursos, ltuiutaba, v. 22, n. 2, Jul-Dez. 2023 — ISSN 2179-9059 22

mailto:mauro.gazzani@uemg.br
mailto:katia.lopes@uemg.br

