

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 5

IMPLEMENTAÇÃO DAS OPERAÇÕES DE UMA

UNIDADE DE PONTO FLUTUANTE DE 32 BITS BASEADA

NO PADRÃO IEEE 754 EM VERILOG

IMPLEMENTATION OF THE OPERATIONS OF A 32-BIT

FLOATING POINT UNIT BASED ON THE IEEE 754

STANDARD IN VERILOG

ERIKC JOSÉ FERREIRA SANTOS, KÁTIA LOPES SILVA, MAURO

HEMERLY GAZZANI

RESUMO
Uma UPF (Unidade de Ponto Flutuante) de forma geral é um coprocessador matemático, o
qual faz parte de um sistema computacional especialmente projetado para realizar operações
em números de ponto flutuante. As operações típicas que são tratadas pela UPF são adição,
subtração, multiplicação e divisão. Este trabalho apresenta modelagem e simulação de uma
UPF de 32 bits usando a linguagem Verilog no ambiente da plataforma EDA Playground. A
UPF de 32 bits foi modularizada em quatro unidades funcionais, sendo uma para cada tipo de
operação (adição, subtração, multiplicação e divisão). As unidades funcionais possuem uma
saída de 32 bits, que representa o resultado da operação realizada, e outra saída que
representa os sinalizadores (flags) que sinalizam o estado do resultado das unidades. O
principal foco deste trabalho é a análise, projeto e implementação da UFM (Unidade Funcional
de Multiplicação). A verificação funcional foi realizada em uma bancada de teste (TestBench),
onde vários casos de testes foram simulados envolvendo situações que podem acontecer no
resultado da operação tais como: overflow, underflow e exceções (NAN, infinito). Os
resultados apresentados pela UFM que a UPF de 32 bits implementa, demostram que ela
funcionou adequadamente para os casos de testes gerados.

Palavras chave: UPF 32 bits. Verilog. UFM, IEEE 754.

ABSTRACT
A FPU (Floating Point Unit) in general is a math coprocessor, which is part of a computer
system specially designed to perform operations on floating point numbers. Typical operations
that are handled by the FPU are addition, subtraction, multiplication, and division. This work
presents modeling and simulation of a 32-bit FPU using the Verilog language in the EDA
Playground platform environment. The 32-bit FPU was modularized into four functional units,
one for each type of operation (addition, subtraction, multiplication and division). The functional
units have a 32-bit output, which represents the result of the operation performed, and another
output that represents the flags (flags) that signal the state of the units' result. The main focus
of this work is the analysis, design and implementation of the FMU (Functional Multiplication

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 6

Unit). The functional verification was carried out in a test bench (TestBench), where several
test cases were simulated involving situations that can happen in the result of the operation
such as: overflow, underflow and exceptions (NAN, infinity). The results presented by the FMU
that the 32-bit FPU implements worked properly for the generated test cases.

Keywords: FPU 32 bits. Verilog. FMU, IEEE 754.

INTRODUÇÃO

Projetos de sistemas digitais usando Linguagens de Descrição de Hardware
(Hardware Description Language - HDL) é um campo com grande potencial de
crescimento na atualidade. As aplicações dos projetos digitais estão presentes em
nosso dia a dia, incluindo computadores, calculadoras e câmeras de vídeo etc.

A linguagem HDL permite projetar hardware digital utilizando um software.
Inegável que uma grande economia de tempo é constatada ao projetar sistemas
usando uma HDL. Como ponto relevante pode-se citar o ganho em vantagem
competitiva, com a redução do tempo de colocação no mercado de um sistema. Outra
vantagem é a possibilidade de realizar variadas simulações operacionais que
possibilitam ter um projeto otimizado antes da implantação do sistema no hardware.
Desta forma, vários erros podem ser encontrados durante a simulação e suas
correções implementadas, reduzindo os custos com hardware.

A linguagem Verilog, cuja padronização atual é a IEEE 1364-2005, é uma HDL
usada para modelar sistemas eletrônicos. Um subgrupo da linguagem é tipicamente
utilizado para propósitos de síntese e a linguagem completa pode ser utilizada para
modelamento e simulação. Verilog suporta a projeção, verificação e implementação
de projetos analógicos, digitais e híbridos em vários níveis de abstração. Um dos
principais atributos da modelagem de circuitos por linguagem descritiva frente à
modelagem por captura de esquemático, está ligado ao fato de que desta maneira o
projeto torna-se independentemente da plataforma de desenvolvimento (IDE) na qual
se está trabalhando. Além disso, adotando-se as boas práticas na descrição dos
circuitos, o compilador é inclusive capaz de contornar a ausência de determinado
recurso na tecnologia onde o circuito será sintetizado, conferindo uma portabilidade
desse modelo para qualquer dispositivo (target) onde pode ser sintetizado.
(CAVANAGH, 2010).

Segundo Sahu e Dev (2012), uma Unidade de Ponto Flutuante (UPF) de forma
geral é um coprocessador matemático, o qual faz parte de um sistema computacional
especialmente projetado para realizar operações em números de ponto flutuante. As
operações típicas que são tratadas pela UPF são adição, subtração, multiplicação e
divisão.

Do ponto de vista da arquitetura, a UPF é um coprocessador que opera em
paralelo com a unidade inteira do processador. A UPF obtém suas instruções da
mesma instrução decodificador e sequenciador e compartilha o barramento do
sistema. Além disso, unidade lógica aritmética (ULA) e a UPF operam
independentemente e em paralelo. No caso da Intel, a microarquitetura de um
processador Intel varia entre as várias famílias de processadores. Por exemplo, o
processador Pentium Pro tem duas unidades inteiras e duas UPFs; enquanto, o

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 7

processador Pentium tem duas unidades inteiras e uma UPF, e o processador Intel486
tem uma unidade inteira e uma UPF. (INTEL,1999).

Este trabalho apresenta modelagem e simulação de uma UPF que executa as
funções básicas com especial foco na operação de multiplicação. As atividades
envolvidas na implementação são: a manipulação de dados de ponto flutuante, a
conversão de dados para o formato IEEE 754, a execução de qualquer uma das
operações aritméticas como adição, subtração, multiplicação.

ESTADO DA ARTE

DSPs (do inglês Digital Signal Processor) ou quaisquer outros processadores

que envolvam operações complexas como multiplicação e/ou acumulação operações
com alta precisão necessitam de Unidade de Ponto Flutuante (UPF) para garantir um
desempenho conveniente.

Uma unidade de ponto flutuante contém sequência de dígitos em três partes
que é sinal, mantissa e expoente. O sinal pode ser positivo ou negativo, mantissa é
sequência de dígitos e expoente é a potência de magnitude. A operação principal de
uma unidade de ponto flutuante inclui adição, subtração, multiplicação, divisão e raiz
quadrada. A unidade de ponto flutuante pode ser de precisão simples ou dupla.

O principal marco para teoria de ponto flutuante aconteceu em 1985 quando o
Padrão para Aritmética de Ponto Flutuante Binário IEEE Std754 foi apresentado pelo
Institute of Electrical and Electronics Engineers (IEEE) e depois atualizado em 1990
pelo mesmo instituto. Neste padrão, atualmente recomendado também pelo ANSI
American National Standard Institute (ANSI), tem-se as normas a serem seguidas
pelos fabricantes de computadores e construtores de compiladores de linguagens
científicas, ou de bibliotecas de funções matemáticas, na utilização da aritmética
binária para números de ponto flutuante. (IEEE,1985)

Cavanagh (2010) apresentou em seu livro a aritmética computacional para
pontos fixos, decimais, e representações de números de ponto flutuante para as
operações de adição, subtração, multiplicação e divisão, e para implementar essas
operações usando Verilog. As diferentes construções de modelagem suportadas pelo
Verilog são descritas em detalhes. No caso de ponto flutuante, forma apresentados
os algoritmos para implementação das operações de adição, subtração, multiplicação
e divisão, todas baseadas no padrão do Instituto de Engenheiros Elétricos e
Eletrônicos (IEEE) para Aritmética de Ponto Flutuante Binário IEEE Std 754-1985.
Todos os algoritmos foram implementados utilizando a linguagem Verilog.

Sahu e Dev (2012) publicaram em seu trabalho de graduação em Ciência da
computação do National Institute Of Technology Rourkela na Índia, a modelagem e
implementação de uma Unidade de ponto flutuante baseada no padrão IEEE 754. A
implantação mostrou-se bastante eficiente e executa as funções básicas e
transcendentais com uma reduzida complexidade quando comparada com as
implementações da família x87 do fabricante Intel. As velocidades de clock ficaram
próximas, porém a utilização de memória foi bastante reduzida.

Ziaullah e Munaff (2015) implementaram operações típicas de uma UPF. As
funções executadas foram a manipulação de dados de ponto flutuante, conversão de
dados para o formato IEEE 754, execução de qualquer uma das seguintes operações

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 8

aritméticas como adição, subtração, multiplicação, divisão. Todos os algoritmos foram
avaliados no ambiente Modelsim. Segundo os autores, todas as funções foram
construídas por algoritmos com diversas mudanças incorporadas.
Consequentemente, todas as funções da unidade são únicas em certos aspectos, e
essas funções tenderão a mostrar eficiência e velocidade comparáveis e, se
canalizadas, maior taxa de transferência. Na verdade, os autores não deixam muito
claro as mudanças realizadas, mostrando apenas os resultados atingidos.

Upendar (2018) apresentou uma implementação ASIC (Aplication Specifi
Integrated Circuit) de alta velocidade de uma unidade de ponto flutuante que pode
executar funções de adição, subtração, multiplicação e divisão em operandos de 32
bits que usam o padrão IEEE 754. As Unidades de pré-normalização e pós-
normalização também são discutidas juntamente com sua manipulação. Todas as
funções são construídas por algoritmos eficientes viáveis com diversas mudanças
incorporadas que podem melhorar a latência geral e, se for canalizado, maior taxa de
transferência. No caso da multiplicação, o algoritmo Booth foi utilizado, pois este
oferece uma forma mais eficiente de multiplicar inteiros binários com muito menos
operações de adição/subtração. Os algoritmos são modelados em Verilog HDL e o
código RTL para somador, subtrator, multiplicador, são sintetizados usando HDL
designer series e XILINX.

Savaliya e Rudani (2020) implementaram um UPF, baseada no padrão IEEE
754, para valores de ponto flutuante de precisão simples de 32 bits. A principal
aplicação desta UPF está no processador DSP, para o processamento de sinais, onde
é necessário um valor com alta precisão e por se tratar de um processo iterativo, o
cálculo deve ser o mais rápido possível. Este projeto apresenta a implementação de
uma unidade aritmética de vírgula flutuante eficiente de 32 bits usando Verilog com o
objetivo de analisar o problema durante a implementação e entender a forma de
contornar o problema a fim de melhorar o desempenho do sistema. Os resultados
mostraram-se satisfatórios e os autores sugeriram como trabalho futuro a
implementação de um conversor, para realizar a conversão da saída em forma IEEE
754 em representação decimal e fornecer a saída como um sistema numérico decimal.

Maladkar e Aradhya (2021) desenvolveram uma unidade de ponto flutuante
otimizada para que o atraso fosse reduzido e a eficiência fosse aumentada. A unidade
de ponto flutuante foi escrita de acordo com o padrão IEEE 754 e todo o projeto foi
codificado em Verilog HDL e simulado com Xilinx 14.7 (2022). Na proposta, a
eficiência do projeto é aumentada com menos atraso computacional em comparação
com um método tradicional. Os resultados são melhorados em 12% com o uso do
multiplicador védico que é um atraso de 4.450ns em comparação com 5.123ns com
um multiplicador de matriz. O projeto pode ser usado em computação matemática,
processamento de sinais, gráficos e outros que necessitam de melhor velocidade de
cálculos e operações que envolvem ponto flutuante.

FUNDAMENTAÇÃO TEÓRICA

Linguagem Verilog

A linguagem Verilog é uma linguagem de descrição de hardware (HDL) que
fornece um meio de especificar um sistema digital em uma ampla gama de níveis de

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 9

abstração. A linguagem suporta os estágios conceituais de projeto com sua fase
comportamental de abstração, e o estágio posterior de implementação com suas
abstrações estruturais. A linguagem inclui construções hierárquicas, permitindo ao
desenvolvedor controlar a complexidade de uma descrição.

Foi originalmente projetado entre 1983 e 1984 como um produto proprietário de
verificação e simulação. Mais tarde, várias outras ferramentas de análise foram
desenvolvidas em torno da linguagem, incluindo um simulador de falhas e um
analisador de tempo. Mais recentemente, a Verilog também forneceu a especificação
de entrada para ferramentas de síntese lógica e comportamental. A linguagem Verilog
tem sido fundamental para fornecer consistência entre essas ferramentas. A
linguagem foi padronizada primeiramente como padrão IEEE 1364-1995. Atualmente
a padronização vigente é o IEEE 1364-2005.

As etapas de uma simulação são mostradas na figura 1 na qual pode-se notar
o fluxo de uma formação de um código em Verilog.

Figura 1- Visão geral da simulação em Verilog

Fonte: Modificado de Altera Corporation (2008)

As descrições estruturais do Verilog são compostas de vários blocos de código

e permitem a introdução de hierarquia em um projeto (Figura 2). Os elementos da
estrutura do programa são: o módulo, a porta e o sinal. Um modelo (sistema) em
Verilog é composto de módulos (componentes). Desta forma, como mostrado na
figura 2 tem-se que um sistema pode ser composto de vários componentes os quais
podem ser compostos de subsistemas. Os sistemas instanciam os componentes 1 e
2 e este último instância o subsistema 3.

Figura 2 - Estrutura de um programa em Verilog

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 10

Fonte: Modificado de LaMeres (2019)

Em Verilog, um componente é representado por um módulo, que é a unidade
básica. A declaração do módulo fornece a visão "externa" do componente; ele
descreve o que pode ser visto de fora, incluindo as portas dos componentes. O corpo
do módulo fornece uma visão "interna"; descreve o comportamento ou a estrutura do
componente.

Um módulo representa um texto de declaração que detalha a função do módulo
utilizando as construções Verilog. Ele representa através de comandos e estruturas
da linguagem a estrutura física do hardware e seu comportamento. Desta forma, o
módulo em Verilog manipula as entradas e produz as saídas do circuito lógico.

 Conforme Cavanagh (2010), Verilog possui elementos lógicos predefinidos
chamados primitivos. Esta lógica embutida primitivos são elementos estruturais que
podem ser instanciados em um projeto maior para formar uma estrutura mais
complexa. Exemplos de primitivas lógicas integradas são as operações lógicas de
AND, OR, XOR e NOT.

Ponto Flutuante e o Padrão IEEE 754

Em, 1985, o padrão IEEE 754 para aritmética de ponto flutuante foi
estabelecido e, desde a década de 1990, as representações mais comumente
encontradas são aquelas definidas pelo IEEE.

A UPF da arquitetura Intel (IA) fornece recursos de processamento de ponto
flutuante de alto desempenho. Ele suporta os tipos de dados real, integer e BCD-
integer e os algoritmos de processamento de ponto flutuante e arquitetura de
tratamento de exceção definidos no IEEE padrões 754 e 854 para aritmética de ponto
flutuante. A UPF executa as instruções do fluxo de instruções normal do processador
e melhora muito a eficiência dos processadores em lidar com os tipos de operações

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 11

de processamento do ponto flutuante de alta precisão comumente encontradas em
aplicações científicas, de engenharia e de negócios. (INTEL,1999).

Cada geração de UPFs das arquiteturas de computadores atualmente são
projetadas para fornecer estabilidade, resultados precisos quando programados
usando algoritmos simples de “lápis e papel”, trazendo a funcionalidade e o poder da
computação numérica precisa para o usuário final. O padrão IEEE 754 aborda
especificamente essa questão, reconhecendo a importância fundamental de tornar os
cálculos numéricos fáceis e seguros de usar. Viana (2022) descreve o padrão IEEE
754:

O padrão IEEE 754, recomendado pelos institutos ANSI (American
National Standard Institute) e IEEE (Institute of Electrical and Eletronic
Engineers), refere-se às normas a serem seguidas pelos fabricantes
de computadores e construtores de compiladores de linguagens
científicas, ou de bibliotecas de funções matemáticas, na utilização da
aritmética binária para números de ponto flutuante. As recomendações
são relativas ao armazenamento de dados numéricos, métodos de
arredondamento, tratamento de casos de underflow e overflow, formas
de realização das quatro operações aritméticas básicas e
implementação de funções nas linguagens de programação.

(VIANA,2022)

Para aumentar a velocidade e a eficiência dos cálculos de números reais, os
computadores ou UPFs normalmente representam números reais em um formato
binário de ponto flutuante. Neste formato, um número real tem três partes: um sinal,
um significativo e um expoente. A figura 3 mostra o formato binário de ponto flutuante
em precisão simples (32 bits). Desta forma, N = s + e + f, corresponde ao tamanho da
palavra em bits. No caso da precisão simples: s = 1, e =8 e f = 23 bits, totalizando
N = 32 bits.

Figura 3 – Formato binário de ponto flutuante

Fonte: INTEL (1999)

Um ponto muito importante do padrão IEEE 754 está relacionado com o
expoente. Para facilitar as implementações, o expoente é polarizado (bias em inglês),
ou seja, trabalha-se sempre com expoente positivo. Deste modo, para o caso de 32
bits o padrão recomenda somar 127 ao expoente.

O padrão IEEE 754 trabalha com o número em ponto flutuante normalizado, ou
seja, o primeiro dígito (d1) deve ser diferente de zero para assegurar a unicidade de

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 12

representação, e manter sempre a precisão máxima suportada pela mantissa (Vianna,
2022).

A figura 4 mostra um exemplo de um número decimal em formato IEEE 754 na
base 2:

Figura 4 – Exemplo de um número no formato IEEE 754 normalizado e
polarizado

Fonte: Autor

O padrão IEEE 754 possui algumas classes especiais de representação para
atender os resultados de operações aritméticas que não são suportadas pelos
computadores; como por exemplo: divisão por zero, overflow. Nestes casos tem-se as
representações mostradas no quadro 1.

Quadro 1 – Classes especiais de representação do Formato IEEE754

Caso Sinal Expoente Não
Polarizado

Expoente
Polarizado

Mantissa Significado

Zeros 0 -127 0 0 +0

Zeros 1 -127 0 0 -0

Infinitos 0 128 255 0 +∞

Infinitos 1 128 255 0 −∞

NaN (Not a
Number)

1 ou 0 128 255 ≠ 0 exceções,
invariavelmente,

intratáveis

Não
Normalizado

1 ou 0 -126 (não vale
o 127)

0 0.f 1 f 2 f 3 ...f23 Útil para
números
pequenos

Fonte: Autor

Unidade de Ponto Flutuante (UFP)

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 13

Uma unidade de ponto flutuante (UPF, coloquialmente um coprocessador
matemático) é uma parte de um sistema de computador especialmente projetado para
realizar operações em números de ponto flutuante. As operações típicas são adição,
subtração, multiplicação, divisão e outras, conforme a implementação.

Qualquer operação matemática, como adição, subtração, multiplicação ou
divisão, pode ser realizada pela unidade de processamento de inteiros ou pela UPF.
Quando uma CPU recebe uma instrução, ela a envia automaticamente para o
processador correspondente. Por exemplo, 20 + 3 seria processado como um cálculo
inteiro pela Unidade Lógica Aritmética (ULA), enquanto 20,3245 + 3,789 seria enviado
para a UPF.

Na computação, uma UPF é usada para representação de fórmulas de
números reais como uma aproximação para oferecer suporte a uma compensação
entre intervalo e precisão. Frequentemente usada em sistemas com números reais
muito pequeno ou grande que requerem tempos de processamento rápido. Em geral,
um número de ponto flutuante é representado com um número fixo de dígitos
significativos e escalado usando um expoente em alguma base fixa; a base para a
escala é normalmente dois, dez ou dezesseis.

Figura 5 - Visão geral da UPF

Fonte: Autor

A Figura 5 ilustra a visão geral da UPF de 32 bits, onde as entradas A e B de
32 bits representam os operandos, e a entrada de 2 bits representa os códigos de
operação (adição, subtração, multiplicação e divisão). Os dois bits combinados S1 e
S0 (00: adição, 01: subtração, 10: multiplicação e 11: divisão) identificam a unidade
funcional da UPF que realiza a operação correspondente. O sinal de saída F de 32
bits representa o resultado da última operação realizada pela UPF, e os outros 3 bits
de saída sinalizam o estado do resultado da UPF.

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 14

PROJETO DA UPF DE 32 BITS

A UPF de 32 bits é modularizada em unidade funcionais e ilustrada na figura 6.
As quatro unidades funcionais são denominadas como seguem: Unidade Funcional
de Adição (UFA), e a Unidade Funcional de Subtração (UFS), Unidade Funcional de
Multiplicação (UFM) e Unidade Funcional de Divisão (UFD). As 2 entradas de 32 bits
representam os operandos das respectivas unidades funcionais. Cada uma das
unidades funcionais possui uma saída de 32 bits, que representa o resultado da
operação realizada, e outra saída que representa os sinalizadores (flags) que
sinalizam o estado do resultado das unidades. O MUX 4:1 utiliza os bits S1 a S0 para
selecionar a saída de qual unidade será aquela da UFP.

Figura 6 - Unidades Funcionais da UPF de 32 Bits

Fonte: Autor

O principal foco deste trabalho é a análise, projeto e implementação da Unidade
Funcional de Multiplicação. Para multiplicar dois números em ponto flutuante, 1.f1 x
2e1 * 1.f2 x 2e2 (onde e1 e e2 são expoentes já polarizados), os seguintes passos
são necessários: [1] Verificar se todos os bits de e1 ou e2 sejam iguais a zero, e,
portanto, o número está desnormalizado e o bit implícito da mantissa correspondente
é definido como 0 (0.f x 2e) formando uma mantissa de 24 bits. Caso contrário, o
número está normalizado e bit implícito é definido como 1 (1.f x 2e);[2] Multiplicar as
Mantissas incluindo o bit implícito; [3] Somar os expoentes: somar e1 com e2 e subtrair
127 (01111111) para eliminar a dupla polarização no resultado, e1+e2–011111112; [4]
Obter o sinal do produto: s1 XOR s2; [5] Normalizar o resultado, se necessário (como
por exemplo o resultado da multiplicação seja igual a 10.xxxx..x. Neste caso desloca-
se o ponto decimal uma vez para a esquerda e soma-se 1 ao expoente determinado
no passo 3); [6] Arredondar o resultado para caber nos bits disponíveis da mantissa,
no caso 23 bits; [7] Determinar os flags de ocorrência de underflow/overflow, ou se a
operação é inválida.

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 15

A Figura 7 mostra um diagrama de blocos desta unidade, não inclusa a
determinação dos flags citados no passo 7 no parágrafo anterior.

Figura 7 – Visão geral da Unidade Funcional de Multiplicação (UFM)

Fonte: Autor

Os códigos dos módulos em Verilog descritos são mostrados nas figuras 8 e 9
para Unidade funcional de multiplicação 32 Bits.

A implementação em linguagem Verilog pode ser realizada com vários IDEs
baseados em Verilog com FPGAs Altera e Xilinx (2022) que são suportados pelo
Altera Quartus II e Xilinx ISE IDEs disponíveis no mercado. No caso deste trabalho foi
utilizado o EDA Playground (2022).

O EDA Playground possui um ambiente online para simular (utilizando vários
simuladores disponíveis: o usuário pode escolher qual deseja utilizar) e sintetizar
implementações nas linguagens SystemVerilog, Verilog, VHDL, C ++ / SystemC e
outros HDLs. Os resultados das simulações podem ser visualizados na forma de
ondas usando o visualizador de ondas baseado em navegador EPWave e por meio
de definições de casos de teste no Test Bench.

Figura 8 – Código Verilog da Unidade Funcional de Multiplicação – Parte 1

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 16

Fonte: Autor

Figura 9 - Código Verilog da Unidade Funcional de Multiplicação – Parte 2

Fonte: Autor

RESULTADOS E DISCUSSÃO

Conforme LaMeres (2019) um dos componentes essenciais do fluxo do projeto
digital moderno é verificar a funcionalidade por meio simulação. Essa verificação
funcional é realizada em uma bancada de teste (TestBench). Uma bancada de teste
é um modelo Verilog que instancia o sistema a ser testado como um subsistema, gera
os padrões de entrada para conduzir o subsistema e observa as saídas. Bancadas de
teste são usadas apenas para simulação, para que se possa usar técnicas de
modelagem abstratas que não são sintetizáveis para gerar os padrões de estímulo.

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 17

As construções sintáticas em Verilog podem ser usadas para relatar o status de um
teste e verificar automaticamente se as saídas estão corretas.

Quadro 2 – Casos de Testes da UFM de 32 Bits

1exception: operação inválida. 2overflow: ocorre quando uma operação aritmética resulta em uma
magnitude maior do que pode ser expressa com um expoente de 128. Exemplo: 2^120 * 2^100 =
2^220.

3underflow: ocorre quando a magnitude fracionária é muito pequena com um expoente abaixo de -
127. Exemplo: 2^-120 * 2^-100 = 2^-220. 4+infinity: infinito positivo.

Fonte: Autor

O quadro 2 mostra 11 casos de testes que serão simulados para a Unidade
Funcional de Multiplicação (UFM). Deve-se observar que todos os números
hexadecimais estão em formato IEEE 754 32 bits com expoentes polarizados.

Os casos de teste projetados no quadro 2 servirão como bancada de testes
para a simulação dos resultados para casos típicos de multiplicação, casos que
resultam em operações inválidas, e os casos para simular overflow e underflow.

Uma bancada de teste é um arquivo em Verilog que não possui entradas ou
saídas. A bancada de testes instancia o sistema a ser testado como um módulo de
nível inferior. O sistema que está sendo testado é frequentemente chamado de
dispositivo em teste (DUT) ou unidade em teste (UUT).

O código Verilog da bancada de teste para a simulação para a unidade
funcional de multiplicação é mostrado nas figuras 10 e 11.

Figura 10 - Código da Bancada de Teste – UFM - Parte 1

Caso de teste Entradas Saída esperada

Multiplicação a * b
#1

a = 40C9999A (+6,3)
b = +infinity4

mult = 00000000
exception1 = 1

Multiplicação a * b
#2

a = 7B86D0AA (+1.39999997806e+36)
b = 71834436 (+1.299999944e+30)

mult = 00000000
overflow2 = 1

Multiplicação a * b
#3

a = 4234851F (+45,13)
b = 427C851F (+63,13)

mult = 453210E9

Multiplicação a * b
#4

a = 4049999A (+3,15)
b = C1663D71 (-14,39)

mult = C2355062

Multiplicação a * b
#5

a = C1526666 (-3.15)
b = C240A3D7 (-48,16)

mult = 441E5375

Multiplicação a * b
#6

a = 41C80000 (+25,0)
b = 42480000 (+50,0)

mult = 449C4000

Multiplicação a * b
#7

a = 3ACA62C1 (+0.00154408081)
b = 3ACA62C1 (+0.00154408081)

mult = 361FFFE7

Multiplicação a * b
#8

a = 037F3637 (+7.50000004534e-37)
b = 0D7D1FDD (+7.79999981785e-31)

mult = 00000000
underflow3 = 1

Multiplicação a * b
#9

a = 00000000 (0)
b = 00000000 (0)

mult = 00000000

Multiplicação a * b
#10

a = 7F800000 (+infinity4)
b = 00000000 (0)

mult = 00000000
exception1 = 1

Multiplicação a * b
#11

a = 7F800000 (+infinity4)
b = 7F800000 (+infinity4)

mult = 00000000
exception1 = 1

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 18

Fonte: Autor

Figura 11 - Código da Bancada de Teste – UFM - Parte 2

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 19

Fonte: Autor
As figuras 12 e 13 mostram os resultados da simulação para a banca de testes

descritos no quadro 2 para a UFM.

Figura 12 - Resultados da Simulação dos casos de teste – Parte 1

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 20

Fonte: Autor
Figura 13 - Resultados da Simulação dos casos de teste – Parte 2

Fonte: Autor

O tempo total de simulação foi de 11 ns, sendo simulado 1 ns para cada um

dos testes. A simulação da UFM teve o comportamento esperado de seus resultados
em todos os seus testes conforme previsto na bancada de testes do quadro 2, e como
pode ser visto tanto no resultado para os casos típicos (#3 a #7 e #9), os casos de
underflow (#8), e os casos de operações inválidas (#1, #10 e #11).

CONSIDERAÇÕES FINAIS

Este trabalho apresenta modelagem e simulação de uma UPF que executa as
funções básicas com especial foco na operação de multiplicação. As atividades
envolvidas na implementação são: a manipulação de dados de ponto flutuante, a
conversão de dados para o formato IEEE 754, a execução de qualquer uma das
operações aritméticas como adição, subtração, multiplicação.

A unidade funcional de multiplicação foi implementada em linguagem Verilog
utilizando a plataforma EDA Playground. Vários casos de testes envolvendo situações
que podem acontecer no resultado da operação tais como: overflow, underflow e
exceções (NAN, infinito).

Os resultados apresentados pela Unidade funcional de multiplicação que a UPF
de 32 bits implementada pelo método e código descritos funcionou adequadamente
para os casos de testes gerados.

Como sugestão de trabalhos futuros a partir desta implementação são
sugeridos: implementação de um algoritmo védico na operação de multiplicação e a
implementação das operações de adição, subtração e divisão.

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 21

REFERÊNCIAS

ALTERA CORPORATION. Verilog HDL Basis. 2008. Disponível em
<http://www.ee.ic.ac.uk/pcheung/teaching/ee2_digital/Altera%20Tutorial%20-
%20Verilog%20HDL%20Basic.pdf >. Acesso em: 03 mar. 2022.

CAVANAGH, Joseph. Computer Arithmetic and Verilog HDL Fundamentals. Boca
Raton: CRC Press Taylor & Francis Group, 2010.

EDA Playground. Disponível em: https://edaplayground.com. Acesso em: 28 de mai.
de 2022.

INTEL. Intel Architecture Software Developer’s Manual. 1999. Volume 1: Basic
Architecture. Disponível em <https://www.cs.cmu.edu/~410/doc/intel-arch.pdf>.
Acesso em: 24 de mai. 2022.

LAMERES, Brock J. Quick Start Guide to Verilog. Cham, Switzerland: Springer

MALADKAR , Kishan; ARADHYA , Ravish. Design and Implementation of a 32-bit
Floating Point Unit. International Journal for Research in Applied Science &
Engineering Technology (IJRASET), 2021, Vol. 9, Issue IV. e Published Online Dec.
2021 in RASET Journals. Disponível em <
https://www.ijraset.com/fileserve.php?FID=35052 >. Acesso em: 02 de jun. 2022.

SAHU, L.; DEV, R. An efficient IEEE 754 compliant floating point unit using
Verilog. 2012. A Thesis Submitted for The Partial Fulfilment of Requirements for
Degree of Bachelor of Technology IN Computer Science and Engineering- Department
of Computer Science and Engineering National Institute of Technology Rourkela
Rourkela - 769008, India, 2012. Disponível em <
http://ethesis.nitrkl.ac.in/3638/1/thesis_final.pdf >. Acesso em: 24 de mai. 2022.

SAVALIYA , Yagnesh; RUDANI , Jenish. Design and Simulation of 32-Bit Floating Point
Arithmetic Logic Unit using Verilog HDL. International Research Journal of
Engineering and Technology (IRJET)), 2020, Vol. 7, Issue 12. E-Published Online
Dec. 2020 in IRJET Journals. Disponível em <
https://www.irjet.net/archives/V7/i12/IRJET-V7I12262.pdf >. Acesso em: 25 de mai.
2022.

UPENDAR, S. Design and implementation of floating point Unit using VERILOG.
Journal of Advanced Research in Technology and Management Sciences, 2018,
Vol. 00, Issue 1. e Published Online Dec. 2018 in Artms Journals. Disponível em <
http://jartms.org/view_issue.php?title=DESIGN-AND-IMPLEMENTATION-OF-
FLOATING-POINT-UNIT-USING-VERILOG >. Acesso em: 20 de mai. 2022.

VIANA, G. V. R. Padrão IEEE 754 para aritmética binária de ponto flutuante.
Universidade Estadual do Ceará-Departamento de Estatística e Computação.
2022.UFCE. (Apostila). Disponível em <
https://www.lia.ufc.br/~valdisio/download/ieee.pdf >. Acesso em: 24 de mai. 2022.

http://jartms.org/view_issue.php?title=DESIGN-AND-IMPLEMENTATION-OF-FLOATING-POINT-UNIT-USING-VERILOG
http://jartms.org/view_issue.php?title=DESIGN-AND-IMPLEMENTATION-OF-FLOATING-POINT-UNIT-USING-VERILOG

Intercursos, Ituiutaba, v. 22, n. 2, Jul-Dez. 2023 – ISSN 2179-9059 22

XILINX. Verilog Reference Guide. 1999. Disponível em:
http://in.ncu.edu.tw/ncume_ee/digilogi/vhdl/Verilog_Reference_Guide.pdf. Acesso
em: 22 de jun. 2022.

ZIAULLAH, M.; MUNAFF, A. Design and Implementation of Floating Point ALU with
Parity Generator Using Verilog HDL. IOSR Journal of VLSI and Signal Processing,
2015, Vol. 5, Issue 1, Ver. 1. e-ISSN: 2319 – 4200, p-ISSN No.: 2319 – 4197 Published
Online Sep. 2015 in Iosr Journals. Disponível em < https://www.iosrjournals.org/iosr-
jvlsi/papers/vol5-issue5/Version-1/I05515459.pdf >. Acesso em: 19 de mar. 2022.

AUTORES:

ERIKC JOSÉ FERREIRA SANTOS, graduando do Curso de Engenharia Elétrica na
Universidade do Estado de Minas Gerais – UEMG, Unidade Ituiutaba. E-mail:
erikc.1536059@discente.uemg.br.

MAURO HEMERLY GAZZANI, doutor em Engenharia Elétrica pela Universidade
Federal de Uberlândia. Bacharel em Engenharia Elétrica pela Universidade Federal
de Uberlândia. Professor do Curso de Graduação em Engenharia Elétrica da
Universidade do Estado de Minas Gerais – UEMG, Unidade Ituiutaba. E-mail :
mauro.gazzani@uemg.br.

KÁTIA LOPES SILVA, Docteur en Sciences Appliquées pela Université de Liège.
Bacharel em Engenharia Química pela Universidade Federal de Uberlândia.
Professor do Curso de Graduação em Engenharia Elétrica da Universidade do Estado
de Minas Gerais – UEMG, Unidade Ituiutaba. E-mail: katia.lopes@uemg.br.

mailto:mauro.gazzani@uemg.br
mailto:katia.lopes@uemg.br

