Modeling and simulation of biodiesel synthesis with the aid of Matlab software
DOI:
https://doi.org/10.36704/cipraxis.v19i34.9075Keywords:
Biodiesel, Transesterification, Simulation, Modeling, MatlabAbstract
Introduction: Biodiesel is a renewable fuel that contributes to a cleaner energy matrix. Its production can be optimized through simulation and modeling studies.
Objective: The study aimed to simulate the kinetics of the transesterification of vegetable oil with methanol, focusing on the conversion of triglycerides into methyl esters.
Methods: Different temperatures, alcohol-to-oil ratios, and the influence of rate constants were explored. A Matlab code was developed to solve the reaction's differential equations and relate the transesterification process's parameters.
Results: The simulations showed that the maximum concentration of methyl esters (2.57 mol/L) was reached in 30 minutes at 60°C, with an alcohol-to-oil ratio of 6:1. The kinetic model was effective and corroborated previous studies.
Conclusion: The research demonstrated the feasibility of using computational methods, such as Matlab, to optimize the biodiesel production process.
References
AHMAD, Tanweer et al. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renewable Energy, v. 139, p. 1272-1280, 2019. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.renene.2019.03.036.
ALCANTARA, A.; LOPEZ-GIMENEZ, F. J.; DORADO, M. P. Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil. Energies, v. 13, n.11, p. 2994, 2020. DOI: https://doi.org/10.3390/en13112994.
ALISMAEEL, Ziad T. et al. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel, v. 234, p. 170-176, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2018.07.025.
ANIYA, V. K.; MUKTHAM, R. K.; ALKA, K.; SATYAVATHI, B. Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study. Fuel, v. 161, p. 137-145, 2015. DOI: https://doi.org/10.1016/j.fuel.2015.08.042.
BAČIĆ, Matea et al. Continuous integrated process of biodiesel production and purification—the end of the conventional two-stage batch process?. Energies, v. 14, n. 2, p. 403, 2021. DOI: https://doi.org/10.3390/en14020403.
BANCHERO M.; GOZZELINO G. A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15. Energies, v. 11, n.7, p. 1843, 2018. DOI: https://doi.org/10.3390/en11071843.
BASHIRI, H.; POURBEIRAM, N. Biodiesel production through transesterification of soybean oil: A kinetic Monte Carlo study. Journal of Molecular Liquids, v. 223, p. 10-15, 2016. DOI: https://doi.org/10.1016/j.molliq.2016.08.029.
BORRERO-DE ACUÑA, José Manuel et al. Fed-batch mcl-polyhydroxyalkanoates production in Pseudomonas putida KT2440 and ΔphaZ mutant on biodiesel-derived crude glycerol. Frontiers in Bioengineering and Biotechnology, v. 9, p. 642023, 2021. DOI: https://doi.org/10.3389/fbioe.2021.642023.
BORTOLETTO, G. de C. Cinética da reação de transesterificação do óleo de soja para produção de biodiesel via catálise homogênea. 2020. Disponível em: https://repositorio.unifesp.br/handle/11600/58707. Acesso em: 2 nov. 2023.
CAROTA, Eleonora et al. Mixed glycerol and orange peel-based substrate for fed-batch microbial biodiesel production. Heliyon, v. 6, n. 9, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.heliyon.2020.e04801.
CARVALHO, Suelen Conceição de et al. Mathematical modeling of the reactions involved in biodiesel production from waste oils and fats in a batch reactor. Biofuels, p. 1-5, 2024. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1080/17597269.2024.2386485.
DE, Riju; BHARTIYA, Sharad; SHASTRI, Yogendra. Constrained iterative learning control of batch transesterification process under uncertainty. Control Engineering Practice, v. 103, p. 104580, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.conengprac.2020.104580.
DUSSAN, K. J.; CARDONA, C. A.; GIRALDO, O. H.; GUTIÉRREZ, L. F.; PÉREZ, V. H. Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresource technology, v. 101, n. 24, p. 9542-9549, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.07.044.
FOGLER, H. S. Elementos de Engenharia das Reações Químicas. 3ª ed. Rio de Janeiro, RJ: LTC, 2002.
FONSECA, F. A. S.; VIDAL-VIEIRA, J. A.; RAVAGNANI, S. P. Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors. Bioresource technology, v. 101, n. 21, p. 8151-8157, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.05.077.
FREEDMAN, B.; BUTTERFIELD, R. O.; PRYDE, E. H. Transesterification kinetics of soybean oil 1. Journal of the American oil chemists’ society, v. 63, p. 1375-1380, 1986. DOI: https://doi.org/10.1007/BF02679606.
GANESHAN, P.; RAJENDRAN, K. Dynamic simulation and optimization of anaerobic digestion processes using Matlab. Bioresource Technology, v. 351, p. 126970, 2022. DOI: https://doi.org/10.1016/j.biortech.2022.126970.
HEYNDERICKX, P. H. Acquisition of nonlinear kinetics from linear relations: Application on homogeneous transesterification reactions, Chemical Engineering Journal, v. 342, p. 41-51, 2018. DOI: https://doi.org/10.1016/j.cej.2018.01.027.
IYYAPPAN, J. et al. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. Bioresource technology, v. 269, p. 393-399, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2018.09.002.
JAFARI, Dariush; ESFANDYARI, Morteza. Optimization of temperature and molar flow ratios of triglyceride/alcohol in biodiesel production in a batch reactor. Biofuels, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1080/17597269.2017.1358945.
KARMEE, S. K.; CHANDNA, D.; RAVI, R.; CHADHA, A. Kinetics of base-catalyzed transesterification of triglycerides from Pongamia Oil. Journal of the American oil chemists’ society. v. 83, p. 873–877, 2006. DOI: https://doi.org/10.1007/s11746-006-5040-z.
KOMERS K.; SKOPAL, F.; STLOUKAL, R.; MACHEK, J. Kinetics and mechanism of the KOH—catalyzed methanolysis of rapeseed oil for biodiesel production. European Journal of Lipid Science and Technology, v. 104, n. 11, p. 728-737, 2002. DOI: https://doi.org/10.1002/1438-9312(200211)104:11%3C728: AID-EJLT728%3E3.0.CO;2-J.
KUMAR, Lalit R. et al. Microbial lipid and biodiesel production from municipal sludge fortified with crude glycerol medium using pH-based fed-batch strategy. Journal of Environmental Chemical Engineering, v. 9, n. 1, p. 105032, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.jece.2021.105032.
KUMAR, R.; TIWARI, P.; GARG, S. Alkali transesterification of linseed oil for biodiesel production. Fuel, v. 104, p. 553-560, 2013. DOI: https://doi.org/10.1016/j.fuel.2012.05.002.
LIU, Lin et al. Biodiesel production from microbial granules in sequencing batch reactor. Bioresource technology, v. 249, p. 908-915, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2017.10.105.
METAWEA, Rodaina et al. Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles. Energy, v. 158, p. 111-120, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.energy.2018.06.007.
MIRIAM, LR Monisha et al. Algal oil extraction-cum-biodiesel conversion in a novel batch reactor and its compatibility analysis in IC engine at various CRs. Fuel, v. 293, p. 120449, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2021.120449.
MIRZAYANTI, Yustia Wulandari et al. Performance of In-Situ Stirring Batch Reactor Transesterification of Nannochloropsis sp Microalgae into Biodiesel. International Journal of Technology, v. 15, n. 4, 2024. DOI: https://doi.org/10.14716/ijtech.v15i4.6678.
MOLINA, R.; ORCAJO, G.; MARTINEZ, F. KBR (Kinetics in Batch Reactors): a Matlab-based application with a friendly Graphical User Interface for chemical kinetic model simulation and parameter estimation. Education for Chemical Engineers, v. 28, p. 80-89, 2019. DOI: https://doi.org/10.1016/j.ece.2018.11.003.
NARVÁEZ, P. C.; RINCÓN, S. M.; SÁNCHEZ, F. J. Kinetics of palm oil methanolysis. Journal of the American oil chemists’ society. v. 84, p. 971–977, 2007. DOI: https://doi.org/10.1007/s11746-007-1120-y.
NOUREDDINI, H.; ZHU, D. Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists' Society, v. 74, n. 11, p. 1457-1463, 1997. DOI: https://doi.org/10.1007/s11746-997-0254-2.
PANTANO, M. Nadia et al. Evolutionary algorithms and orthogonal basis for dynamic optimization in L2 space for batch biodiesel production. Chemical Engineering Research and Design, v. 177, p. 354-364, 2022. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cherd.2021.11.001.
PEREIRA, Ana S. et al. Bio-oil production for biodiesel industry by Yarrowia lipolytica from volatile fatty acids in two-stage batch culture. Applied Microbiology and Biotechnology, v. 106, n. 8, p. 2869-2881, 2022. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s00253-022-11900-7.
PETRY, F.; DURIGON, G.; SILVA, M. B. Reator em batelada e aplicações em processos industriais. Anuário Pesquisa e Extensão Unoesc Videira, v. 2, p. e16266-e16266, 2017. DOI: https://orcid.org/0000-0003-2428-8080.
PRICE, J.; HOFMANN, B.; SILVA, V. T.; NORDBLAD, M.; WOODLEY, J. M.; HUUSOM, J. K. Mechanistic modeling of biodiesel production using a liquid lipase formulation. Biotechnology Progress, v. 30, n. 6, p. 1277-1290, 2014. DOI: https://doi.org/10.1002/btpr.1985.
RAMÍREZ-LÓPEZ, R.; ELIZALDE, I. Numerical simulation of a heterogeneous catalytic batch reactor to produce biodiesel from vegetable oil. Reaction Kinetics, Mechanisms and Catalysis, v. 136, n. 2, p. 637-651, 2023. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s11144-023-02369-0.
RASHEED, O.; KELANI, Z. A.; DIPESH P. Mechanistic model-based control of biodiesel production processes: a review of needs and scopes, Chemical Engineering Communications, v. 210, p. 274-290, 2023. DOI: https://doi.org/10.1080/00986445.2021.2012463.
SANTANA, H. S.; JÚNIOR, J. L. S.; TARANTO, O. P. Numerical simulations of biodiesel synthesis in microchannels with circular obstructions. Chemical Engineering and Processing: Process Intensification, v. 98, p. 137-146, 2015. DOI: https://doi.org/10.1016/j.cep.2015.10.011.
SARDELLA, M. F.; SERRANO, M. E.; CAMACHO, O.; SCAGLIA, G. J. E. Design and Application of a Linear Algebra Based Controller from a Reduced-Order Model for Regulation and Tracking of Chemical Processes under Uncertainties. Industrial & Engineering Chemistry Research, v. 58, n. 33, p. 15222-15231, 2019. DOI: https://doi.org/10.1021/acs.iecr.9b01257.
SCARPONI, P. et al. C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production. Waste Management, v. 136, p. 266-272, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.wasman.2021.10.014.
SILVA, M. G. et al. Esterification of oleic acid in a semi-batch bubble reactor for biodiesel production. Brazilian Journal of Chemical Engineering, v. 36, n. 1, p. 299-308, 2019. DOI: https://doi.org/10.1590/0104-6632.20190361s20180185.
SIMASATITKUL, L.; SIRICHARNSAKUNCHAI, P.; PATCHARAVORACHOT, Y.; ASSABUMRUNGRAT, S.; ARPORNWICHANOP, A. Reactive distillation for biodiesel production from soybean oil. Korean Journal of Chemical Engineering, v. 28, p. 649-655, 2011. DOI: https://doi.org/10.1007/s11814-010-0440-z.
SONKAR, S.; DEB, D.; MALLICK, N. Outdoor cultivation of the green microalga Chlorella minutissima in mini pond system under batch and fed-batch modes integrating low-dose sequential phosphate addition (LDSPA) strategy for biodiesel production. Biomass and Bioenergy, v. 138, p. 105596, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biombioe.2020.105596.
SOUZA, T. P.; SILVA, R. J.; MELO, J. C.; TSCHOEKE, I. C.; SILVA, J. P.; PACHECO, J. G.; SILVA, J. M. Modelagem cinética da transesterificação de óleo de algodão com etanol. Reaction Kinetics, Mechanisms and Catalysis, v. 128, n. 7, p. 07–722, 2019. DOI: https://doi.org/10.1007/s11144-019-01661-2.
STANESCU, R. C.; LEAHU, C. I.; SOICA, A. Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor. Energies, v. 16, 2023. DOI: https://doi.org/10.3390/en16062883.
TALAGHAT, M. R.; MOKHTARI, S.; SAADAT, M. Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel, v. 280, p. 118578, 2020. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.fuel.2020.118578.
TAN, Chung Hong et al. Exploring the potency of integrating semi-batch operation into lipid yield performance of Chlamydomonas sp. Tai-03. Bioresource technology, v. 285, p. 121331, 2019. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.biortech.2019.121331.
TANAMOOL, Varavut; ENMAK, Prayoon; KAEWKANNETRA, Pakawadee. Batch Fermentation of Salt-Acclimatizing Microalga for Omega-3 Docosahexaenoic Acid Production Using Biodiesel-Derived Crude Glycerol Waste as a Low-Cost Substrate. Fermentation, v. 10, n. 2, p. 86, 2024. DOI: https://doi.org/10.3390/fermentation10020086.
TRAN, N. N.; GELONCH, M. E.; LIANG, S.; XIAO, Z.; SARAFRAZ, M. M.; TIŠMA, M.; FEDERSEL, H-J.; LEY, S. V.; HESSEL, V. Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, v. 426, p. 131703, 2021. DOI: https://doi.org/10.1016/j.cej.2021.131703.
TRAN, Nam Nghiep et al. Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, v. 426, p. 131703, 2021. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cej.2021.131703.
VICENTE, G.; MARTINEZ, M.; ARACIL, J.; ESTEBAN, A. Kinetics of sunflower oil methanolysis. Industrial & Engineering Chemistry Research, v. 44, n. 15, p. 5447-5454, 2005. DOI: https://doi.org/10.1021/ie040208j.
YANG, Xiaoguang et al. Improved production of 1, 3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chemical Engineering Journal, v. 349, p. 25-36, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cej.2018.05.042.
YUSOFF, M. H. M.; AYOUB, M.; NAZIR, M. H.; SHER, F.; ZAHID, I.; AMEEN, M. Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and simulation study, Journal of Environmental Chemical Engineering, v. 9, 2021. DOI: https://doi.org/10.1016/j.jece.2021.105519.
ZAPATA, Betty Y. López et al. Different approaches for the dynamic model for the production of biodiesel. Chemical Engineering Research and Design, v. 132, p. 536-550, 2018. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1016/j.cherd.2018.01.048.
ZHANG, Jun et al. High-Level Production of Recombinant Lipase by Fed-Batch Fermentation in Escherichia coli and Its Application in Biodiesel Synthesis from Waste Cooking Oils. Applied Biochemistry and Biotechnology, v. 195, n. 1, p. 432-450, 2023. DOI: https://doi-org.ez11.periodicos.capes.gov.br/10.1007/s12010-022-04146-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência ET Praxis

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons License.



